Curve Boxplot: Generalization of Boxplot for Ensembles of Curves

In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

[1]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[2]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[3]  Suresh Venkatasubramanian,et al.  Curve Matching, Time Warping, and Light Fields: New Algorithms for Computing Similarity between Curves , 2007, Journal of Mathematical Imaging and Vision.

[4]  M. Genton,et al.  Functional Boxplots , 2011 .

[5]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[6]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  Suresh K. Lodha,et al.  LISTEN: sounding uncertainty visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Holger Theisel,et al.  Vortex Analysis in Uncertain Vector Fields , 2012, Comput. Graph. Forum.

[9]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[10]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[11]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[12]  Erich L. Lehmann,et al.  Descriptive Statistics for Nonparametric Models I. Introduction , 1975 .

[13]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[14]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[15]  Ralf P. Botchen,et al.  INTERACTIVE VISUALIZATION OF UNCERTAINTY IN FLOW FIELDS USING TEXTURE-BASED TECHNIQUES , .

[16]  Hans-Christian Hege,et al.  Trajectory Density Projection for Vector Field Visualization , 2013, EuroVis.

[17]  Hans-Christian Hege,et al.  Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation , 2012, Comput. Graph. Forum.

[18]  Kenneth I. Joy,et al.  Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[20]  Lehmann,et al.  DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS II , 2011 .

[21]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[22]  Bart M. ter Haar Romeny,et al.  Illustrative uncertainty visualization of DTI fiber pathways , 2012, The Visual Computer.

[23]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Holger Theisel,et al.  Closed stream lines in uncertain vector fields , 2011, SCC.

[25]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[27]  Helmut Alt,et al.  Comparison of Distance Measures for Planar Curves , 2003, Algorithmica.

[28]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[29]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[30]  Erin W. Chambers,et al.  Measuring similarity between curves on 2-manifolds via homotopy area , 2013, SoCG '13.

[31]  Rüdiger Westermann,et al.  Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields , 2012, Comput. Graph. Forum.

[32]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[33]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[34]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[35]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[36]  Ming Ouyang,et al.  On algorithms for simplicial depth , 2001, CCCG.

[37]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  P. Bickel,et al.  DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD , 1979 .

[39]  Robert S. Laramee,et al.  Similarity Measures for Enhancing Interactive Streamline Seeding , 2013, IEEE Transactions on Visualization and Computer Graphics.

[40]  Hongling Wang,et al.  Arc-Length Parameterized Spline Curves for Real-Time Simulation , 2003 .

[41]  Penny Rheingans,et al.  Probabilistic surfaces: point based primitives to show surface uncertainty , 2002, IEEE Visualization, 2002. VIS 2002..

[42]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[43]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[44]  Heinz-Otto Peitgen,et al.  Probabilistic 4D blood flow tracking and uncertainty estimation , 2011, Medical Image Anal..

[45]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[46]  H. Hege,et al.  APPROXIMATE LEVEL-CROSSING PROBABILITIES FOR INTERACTIVE VISUALIZATION OF UNCERTAIN ISOCONTOURS , 2013 .

[47]  Kristin Potter,et al.  Surface boxplots. , 2014, Stat.

[48]  Donald H. House,et al.  Visualizing Uncertainty in Predicted Hurricane Tracks , 2013 .

[49]  Hui Zhang,et al.  Beyond Crossing Fibers: Tractography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure , 2013, IPMI.

[50]  Padhraic Smyth,et al.  Joint Probabilistic Curve Clustering and Alignment , 2004, NIPS.

[51]  Sara López-Pintado,et al.  Simplicial band depth for multivariate functional data , 2014, Adv. Data Anal. Classif..

[52]  Vivek Verma,et al.  Comparative flow visualization , 2004, IEEE Transactions on Visualization and Computer Graphics.

[53]  Rüdiger Westermann,et al.  Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields , 2011, Comput. Graph. Forum.

[54]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[55]  Gordon Erlebacher,et al.  Overview of Flow Visualization , 2005, The Visualization Handbook.

[56]  Martin Styner,et al.  Group-Wise Cortical Correspondence via Sulcal Curve-Constrained Entropy Minimization , 2013, IPMI.

[57]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Kwan-Liu Ma,et al.  View-Dependent Streamlines for 3D Vector Fields , 2010, IEEE Transactions on Visualization and Computer Graphics.

[59]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .