Total non-negativity of some combinatorial matrices

Many combinatorial matrices --- such as those of binomial coefficients, Stirling numbers of both kinds, and Lah numbers --- are known to be totally non-negative, meaning that all minors (determinants of square submatrices) are non-negative. The examples noted above can be placed in a common framework: for each one there is a non-decreasing sequence $(a_1, a_2, \ldots)$, and a sequence $(e_1, e_2, \ldots)$, such that the $(m,k)$-entry of the matrix is the coefficient of the polynomial $(x-a_1)\cdots(x-a_k)$ in the expansion of $(x-e_1)\cdots(x-e_m)$ as a linear combination of the polynomials $1, x-a_1, \ldots, (x-a_1)\cdots(x-a_m)$. We consider this general framework. For a non-decreasing sequence $(a_1, a_2, \ldots)$ we establish necessary and sufficient conditions on the sequence $(e_1, e_2, \ldots)$ for the corresponding matrix to be totally non-negative. As corollaries we obtain totally non-negativity of matrices of rook numbers of Ferrers boards, and of graph Stirling numbers of chordal graphs.

[1]  E. G. Whitehead,et al.  Connections between the matching and chromatic polynomials , 1992 .

[2]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[3]  W. N. Everitta,et al.  Jacobi – Stirling numbers , Jacobi polynomials , and the left-definite analysis of the classical Jacobi differential expression , 2006 .

[4]  Ebrahim Ghorbani,et al.  Inverses of triangular matrices and bipartite graphs , 2013 .

[5]  A. Mohr,et al.  Applications of Chromatic Polynomials Involving Stirling Numbers , 2008 .

[6]  David Galvin,et al.  Restricted Stirling and Lah number matrices and their inverses , 2019, J. Comb. Theory, Ser. A.

[7]  G. Royle,et al.  Location of Zeros of Chromatic and Related Polynomials of Graphs , 1994, Canadian Journal of Mathematics.

[8]  Richell O. Celeste Two Approaches to Normal Order Coefficients , 2017, J. Integer Seq..

[9]  F. Brenti,et al.  Expansions of chromatic polynomials and log-concavity , 1992 .

[10]  JAY R. GOLDMAN,et al.  Rook theory III. Rook polynomials and the chromatic structure of graphs , 1978, J. Comb. Theory, Ser. B.

[11]  David Galvin,et al.  Combinatorially interpreting generalized Stirling numbers , 2013, Eur. J. Comb..

[12]  Jay R. Goldman,et al.  ROOK EQUIVALENCE OF FERRERS BOARDS , 2016 .

[13]  Xi Chen,et al.  Total positivity of Riordan arrays , 2015, Eur. J. Comb..

[14]  Francesco Brenti,et al.  The Applications of Total Positivity to Combinatorics, and Conversely , 1996 .

[15]  Tsai-Lien Wong,et al.  On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks , 2017, Electron. J. Comb..

[16]  L. C. Hsu,et al.  A Unified Approach to Generalized Stirling Numbers , 1998 .

[17]  David Galvin,et al.  Stirling Numbers of Forests and Cycles , 2012, Electron. J. Comb..

[18]  Sergey Fomin,et al.  Total positivity : tests and parametrizations , 2018 .

[19]  D. White,et al.  Rook theory. I. Rook equivalence of Ferrers boards , 1975 .

[20]  Augustine O. Munagi,et al.  K-complementing Subsets of Nonnegative Integers , 2005, Int. J. Math. Math. Sci..

[21]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[22]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[23]  Bryce Duncan,et al.  Bell and Stirling Numbers for Graphs , 2009 .

[24]  Ken Joffaniel M. Gonzales Total positivity of a class of combinatorial matrices , 2018 .

[25]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.