Jumps without tears: A new splitting technology for barrier options

The market pricing of OTC FX options displays both stochastic volatility and stochastic skewness in the risk-neutral distribution governing currency returns. To capture this unique phenomenon Carr and Wu developed a model (SSM) with three dynamical state variables. They then used Fourier methods to value simple European-style options. However pricing exotic options requires numerical solution of 3D unsteady PIDE with mixed derivatives which is expensive. In this paper to achieve this goal we propose a new splitting technique. Being combined with another method of the authors, which uses pseudo-parabolic PDE instead of PIDE, this reduces the original 3D unsteady problem to a set of 1D unsteady PDEs, thus allowing a significant computational speedup. We demonstrate this technique for single and double barrier options priced using the SSM.

[1]  Peter Carr,et al.  On the Numerical Evaluation of Option Prices in Jump Diffusion Processes , 2007 .

[2]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[3]  Economical difference schemes for parabolic equations with mixed derivatives , 1964 .

[4]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[5]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[6]  Song Wang,et al.  A computational scheme for options under jump diffusion processes , 2009 .

[7]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[8]  Ebrahim Momoniat,et al.  A comparison of numerical solutions of fractional diffusion models in finance , 2009 .

[9]  Bruno Welfert,et al.  Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .

[10]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[11]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[12]  T. Kluge Pricing derivatives in stochastic volatility models using the finite difference method , 2002 .

[13]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[14]  Muddun Bhuruth,et al.  Numerical pricing of options using high-order compact finite difference schemes , 2008 .

[15]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[16]  Rama Cont Frontiers in quantitative finance : volatility and credit risk modeling , 2008 .

[17]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[18]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[19]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[20]  L. B.,et al.  Elementary Matrices , 1939, Nature.

[21]  J. Verwer,et al.  Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling , 1999 .

[22]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[23]  Andrey Itkin,et al.  Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .

[24]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[25]  Yanping Lin,et al.  Classical and weak solutions for one-dimensional pseudo-parabolic equations with typical boundary data , 1988 .

[26]  J. Davenport Editor , 1960 .

[27]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[28]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[29]  B. A. Wade,et al.  High order smoothing schemes for inhomogeneous parabolic problems with applications in option pricing , 2007 .

[30]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .