Simulation study of flat-sheet air gap membrane distillation modules coupled with an evaporative crystallizer for zero liquid discharge water desalination

Abstract A flat sheet air gap membrane distillation (AGMD) model and an evaporative crystallizer model were developed for design and optimization of the lab-scale zero liquid discharge (ZLD) water desalination experimental plant. The models were validated by comparing with published experimental data. Univariate analysis was utilized to investigate the influences of thirteen operating and dimensional parameters of single stage and multi-stage AGMD modules on the permeate flux, evaporative efficiency, water recovery, and gained output ratio (GOR). Optimization of the parameters were conducted aiming to maximize the permeate flux, water recovery, and GOR of the AGMD module. Membrane distillation and crystallization (MDC) process was then altogether modeled in Aspen Plus software based on the parameter studies of the single and multi-stage AGMD model. The effects of water removal ratio in the crystallizer and NaCl mass fraction of the MD retentate stream on the heat duty of the system were analyzed. The operating condition with the minimum input energy for the current MDC design was determined, and the input energy is 1651.5 kJ/kg-H2O. The process can be further optimized to tremendously reduce the required input energy when the heat stored in the evaporated vapor from the crystallizer is recovered.

[1]  L. Martinez-diez,et al.  Temperature and concentration polarization in membrane distillation of aqueous salt solutions , 1999 .

[2]  Qingfeng He,et al.  Modeling and optimization of air gap membrane distillation system for desalination , 2014 .

[3]  M. Asghari,et al.  Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study , 2015 .

[4]  John H. Lienhard,et al.  Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes , 2013 .

[5]  Hsuan Chang,et al.  Experimental and simulation study of an air gap membrane distillation module with solar absorption function for desalination , 2011 .

[6]  M. Qtaishat,et al.  Heat and mass transfer analysis in direct contact membrane distillation , 2008 .

[7]  G. W. Meindersma,et al.  Air gap membrane distillation: 1. Modelling and mass transport properties for hollow fibre membranes , 2005 .

[8]  A. B. de Haan,et al.  Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis , 2005 .

[9]  Osborne Reynolds,et al.  XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Philosophical Transactions of the Royal Society of London.

[10]  Anthony G. Fane,et al.  Membrane distillation crystallization of concentrated salts—flux and crystal formation , 2005 .

[11]  Yingjin Yuan,et al.  A continuous‐effect membrane distillation process based on hollow fiber AGMD module with internal latent‐heat recovery , 2013 .

[12]  A. B. Haan,et al.  Modelling of a transmembrane evaporation module for desalination of seawater , 1999 .

[13]  Enrico Drioli,et al.  Membrane distillation-crystallization of seawater reverse osmosis brines , 2010 .

[14]  N. Hilal,et al.  Membrane distillation: A comprehensive review , 2012 .

[15]  Haoyun Wu,et al.  Experimental study of hollow fiber AGMD modules with energy recovery for high saline water desalination , 2014 .

[16]  John H. Lienhard,et al.  Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations , 2012 .

[17]  B. L. Pangarkar,et al.  Theoretical and experimental analysis of multi-effect air gap membrane distillation process (ME-AGMD) , 2015 .

[18]  Noam Lior,et al.  Transport analysis of air-gap membrane distillation , 2005 .

[19]  Anthony G. Fane,et al.  Factors affecting flux in membrane distillation , 1990 .

[20]  Tai-Shung Chung,et al.  Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine , 2013 .

[21]  Matthias Rommel,et al.  Solar thermal-driven desalination plants based on membrane distillation☆ , 2003 .

[22]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[23]  Chau‐Chyun Chen,et al.  Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model , 2009 .

[24]  Akili D. Khawaji,et al.  Advances in seawater desalination technologies , 2008 .

[25]  M. E. Findley Vaporization through Porous Membranes , 1967 .

[26]  Rong Wang,et al.  Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge , 2014 .

[27]  Haoyun Wu,et al.  Study on a new air-gap membrane distillation module for desalination , 2014 .

[28]  Fawzi Banat,et al.  Desalination by Membrane Distillation: A Parametric Study , 1998 .

[29]  Mohamed A. Antar,et al.  Experimental and theoretical investigation on water desalination using air gap membrane distillation , 2015 .

[30]  Marek Gryta,et al.  CONCENTRATION OF NaCl SOLUTION BY MEMBRANE DISTILLATION INTEGRATED WITH CRYSTALLIZATION , 2002 .

[31]  Yonglie Wu,et al.  An experimental study on membrane distillation-crystallization for treating waste water in taurine production☆ , 1991 .

[32]  Mahmoud Dhahbi,et al.  Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination , 2003 .

[33]  Farshad Farahbod,et al.  Experimental study of forced circulation evaporator in zero discharge desalination process , 2012 .

[34]  M. Seckler,et al.  Membrane Distillation Crystallization Applied to Brine Desalination: A Hierarchical Design Procedure , 2015 .

[35]  Fawzi Banat,et al.  Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan , 2007 .

[36]  Marek Gryta,et al.  Heat transport in the membrane distillation process , 1998 .

[37]  S.-I. Andersson,et al.  Design and field tests of a new membrane distillation desalination process , 1985 .

[38]  Jack Gilron,et al.  Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy , 2012 .

[39]  Junghui Chen,et al.  Numerical Simulation and Optimal Design of AGMD-Based Hollow Fiber Modules for Desalination , 2009 .

[40]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[41]  Ludovic F. Dumée,et al.  Advances in Membrane Distillation for Water Desalination and Purification Applications , 2013 .

[42]  Pingli Li,et al.  High water recovery of RO brine using multi-stage air gap membrane distillation , 2015 .

[43]  Anthony G. Fane,et al.  Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation , 2003 .

[44]  Sebastian Büttner,et al.  Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module , 2013 .

[45]  Tai-Shung Chung,et al.  Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization , 2012 .

[46]  Rong Wang,et al.  Quantitative study on crystallization-induced scaling in high-concentration direct-contact membrane distillation , 2014 .

[47]  Sadik Kakaç,et al.  Convective Heat Transfer , 1995 .

[48]  Enrico Drioli,et al.  Membrane distillataion in the treatment of aqueous solutions , 1987 .

[49]  E. Drioli,et al.  Membrane Distillation and Related Operations—A Review , 2005 .

[50]  Fawzi Banat,et al.  Theoretical and experimental study in membrane distillation , 1994 .