The Galactic Exoplanet Survey Telescope (GEST)

The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree field in the Galactic bulge to search for extra-solar planets using a gravitational lensing technique. This gravitational lensing technique is the only method employing currently available technology that can detect Earth-mass planets at high signal-to-noise, and can measure the abundance of terrestrial planets as a function of Galactic position. GEST's sensitivity extends down to the mass of Mars, and it can detect hundreds of terrestrial planets with semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly comprehensive survey of the Galaxy for planets like those in our own Solar System.

[1]  L. Vigroux,et al.  Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.

[2]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[3]  P. M. Vreeswijk,et al.  LIMITS ON THE ABUNDANCE OF GALACTIC PLANETS FROM 5 YEARS OF PLANET OBSERVATIONS , 2000 .

[4]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[5]  A. J. Drake,et al.  The MACHO Project: Microlensing Optical Depth Toward the Galactic Bulge from Difference Image Analysis , 2000 .

[6]  A. J. Drake,et al.  Difference Image Analysis of Galactic Microlensing. I. Data Analysis , 1999, astro-ph/9903215.

[7]  Bohdan Paczynski,et al.  The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge , 1993 .

[8]  J. Lunine,et al.  The occurrence of Jovian planets and the habitability of planetary systems. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Bohdan Paczynski,et al.  The Optical Gravitational Lensing Experiment. The Early Warning System: Real Time Microlensing , 1994 .

[10]  K. Zebrun,et al.  The Optical Gravitational Lensing Experiment. Catalog of Microlensing Events in the Galactic Bulge , 2000 .

[11]  O. Shemmer,et al.  Discovery of a planet orbiting a binary star system from gravitational microlensing , 1999, Nature.

[12]  J. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[13]  EXPECTATIONS FROM A MICROLENSING SEARCH FOR PLANETS , 1996, astro-ph/9612062.

[14]  Kevin Krisciunas,et al.  A MODEL OF THE BRIGHTNESS OF MOONLIGHT , 1991 .

[15]  P. Vreeswijk,et al.  The 1995 Pilot Campaign of PLANET: Searching for Microlensing Anomalies through Precise, Rapid, Round-the-Clock Monitoring , 1998, astro-ph/9807299.

[16]  D. Brownlee,et al.  Rare Earth: Why Complex Life Is Uncommon in the Universe , 2000 .

[17]  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[18]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[19]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[20]  T. Nakamura,et al.  Study by MOA of extrasolar planets in gravitational microlensing events of high magnification , 2001, astro-ph/0102184.

[21]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[22]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[23]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[24]  Andrew Cumming,et al.  The Statistics of Extrasolar Planets: Results from the Keck Survey , 2002, astro-ph/0209199.

[25]  C. Lineweaver,et al.  The observational case for Jupiter being a typical massive planet. , 2002, Astrobiology.

[26]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[27]  P. J. Quinn,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[28]  Ray T. Reynolds,et al.  Planetary Habitability and the Origins of Life , 2000 .

[29]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[30]  B. Scott Gaudi,et al.  Distinguishing Between Binary-Source and Planetary Microlensing Perturbations , 1998 .

[31]  William R. Ward,et al.  Comments on the long-term stability of the Earth's obliquity , 1982 .

[32]  M. Dominik Estimating physical quantities for an observed galactic microlensing event , 1997 .

[33]  Andrew Gould,et al.  Planet Parameters in Microlensing Events , 1996, astro-ph/9610123.

[34]  Joachim Wambsganss Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves , 1997 .

[35]  B. Peterson,et al.  Real-Time Detection and Multisite Observations of Gravitational Microlensing , 1996 .

[36]  E. E. Falco,et al.  The Detectability of Planetary Companions of Compact Galactic Objects from Their Effects on Microlensed Light Curves of Distant Stars , 1994 .

[37]  R. Paul Butler,et al.  A Second Planet Orbiting 47 Ursae Majoris , 2002 .

[38]  Harold F. Levison,et al.  Modeling the Diversity of Outer Planetary Systems , 1998 .

[39]  T. Lauer The Photometry of Undersampled Point-Spread Functions , 1999, astro-ph/9907100.

[40]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[41]  A. Drake,et al.  Difference Image Analysis of Galactic Microlensing. II. Microlensing Events , 1999, astro-ph/9903219.

[42]  Austin B. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .

[43]  M. Dominik,et al.  Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .

[44]  H.Sato,et al.  On Planetary Companions to the MACHO-98-BLG-35 Microlens Star , 1999 .

[45]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[46]  David Charbonneau,et al.  A Lack of Planets in 47 Tucanae from a Hubble Space Telescope Search , 2000 .

[47]  David P. Bennett,et al.  Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2002 .

[48]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[49]  Jay Anderson,et al.  Toward High‐Precision Astrometry with WFPC2. I. Deriving an Accurate Point‐Spread Function , 2000, astro-ph/0006325.