Achieving excellent energy storage performance of K1/2Bi1/2TiO3-based ceramics via multi-phase boundary and bandgap engineering

[1]  Shiqing Deng,et al.  Large Energy Capacitive High-Entropy Lead-Free Ferroelectrics , 2023, Nano-Micro Letters.

[2]  M. Pereira,et al.  Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? , 2022, Progress in Materials Science.

[3]  Xihong Hao,et al.  Enhanced energy storage performance of Bi0.5K0.5TiO3-based ceramics via composition modulation , 2022, Journal of Alloys and Compounds.

[4]  Dou Zhang,et al.  The Design and Preparation of High-performance ABS-based Dielectric Composites via Introducing Core-shell Polar Polymers@BaTiO3 Nanoparticles , 2022, Composites Part A: Applied Science and Manufacturing.

[5]  Dou Zhang,et al.  Enhanced breakdown strength and energy density over a broad temperature range in polyimide dielectrics using oxidized MXenes filler , 2022, Journal of Power Sources.

[6]  Wangfeng Bai,et al.  Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi0.5K0.5TiO3-based ceramics , 2022, Materials Today Energy.

[7]  Kecheng Zhang,et al.  Bi0·5K0·5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering , 2022, Materials Today Chemistry.

[8]  Yixuan Li,et al.  Ceramic-Based Dielectrics for Electrostatic Energy Storage Applications: Fundamental Aspects, Recent Progress, and Remaining Challenges , 2022, Chemical Engineering Journal.

[9]  K. Cho,et al.  BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects , 2021, Materials.

[10]  Shiqing Deng,et al.  Outstanding Energy Storage Performance in High‐Hardness (Bi0.5K0.5)TiO3‐Based Lead‐Free Relaxors via Multi‐Scale Synergistic Design , 2021, Advanced Functional Materials.

[11]  D. Poelman,et al.  High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges , 2021, Journal of Materials Chemistry A.

[12]  Yiming Zeng,et al.  A Bi1/2K1/2TiO3- based ergodic relaxor ceramic for temperature-stable energy storage applications , 2021 .

[13]  Chao Cheng,et al.  Simultaneously achieved high energy-storage and superior charge–discharge performance in K0.5Bi0.5TiO3-based lead-free ceramics by A-site defect engineering , 2021, Journal of Materials Science: Materials in Electronics.

[14]  Mupeng Zheng,et al.  Excellent energy storage performance of K0.5Bi0.5TiO3-based ferroelectric ceramics under low electric field , 2021, Chemical Engineering Journal.

[15]  Longtu Li,et al.  Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy , 2020 .

[16]  Xiuli Chen,et al.  Effective strategy to realise excellent energy storage performances in lead-free barium titanate-based relaxor ferroelectric , 2020 .

[17]  J. Zhai,et al.  Normal-relaxor ferroelectric phase transition induced morphotropic phase boundary accompanied by enhanced piezoelectric and electrostrain properties in strontium modulated Bi0.5K0.5TiO3 lead-free ceramics , 2020 .

[18]  J. Zhai,et al.  High energy storage performance and fast discharging speed in dense 0.7Bi0.5K0.5TiO3-0.3SrTiO3 ceramics via a novel rolling technology , 2020 .

[19]  Jinfeng Dong,et al.  Local structure heterogeneity in Sm-doped AgNbO3 for improved energy storage performance. , 2020, ACS applied materials & interfaces.

[20]  J. Zhai,et al.  Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3–Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy , 2019, Journal of Materials Chemistry C.

[21]  P. Joy,et al.  Raman and 23Na solid-state NMR studies on the lead-free ferroelectrics Bi0.5(Na1-K )0.5TiO3 in the morphotropic phase boundary region , 2019, Materials Research Bulletin.

[22]  Wen-Bo Li,et al.  BaTiO3-Based Multilayers with Outstanding Energy Storage Performance for High Temperature Capacitor Applications , 2019, ACS Applied Energy Materials.

[23]  Changhong Yang,et al.  Fatigue‐Free and Bending‐Endurable Flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance , 2019, Advanced Energy Materials.

[24]  M. Josse,et al.  Structure and properties of (Na0.5Bi0.5)ZrO3 (NBZ) lead-free perovskite compound , 2019, Scripta Materialia.

[25]  Yiming Zeng,et al.  Bi 0.5 K 0.5 TiO 3 –CaTiO 3 ceramics: Appearance of the pseudocubic structure and ferroelectric‐relaxor transition characters , 2018, Journal of the American Ceramic Society.

[26]  A. Ahmadi,et al.  Mechanical, thermodynamic and electronic properties of cubic SrHfO3: First-principles calculations , 2018, Superlattices and Microstructures.

[27]  J. Zhai,et al.  Exploring novel bismuth-based materials for energy storage applications , 2018 .

[28]  Fei Li,et al.  Multilayer Lead‐Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency , 2018, Advanced materials.

[29]  J. Zhai,et al.  Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ergodic relaxor ceramics , 2018 .

[30]  I. Reaney,et al.  Designing pseudocubic perovskites with enhanced nanoscale polarization , 2017 .

[31]  Yoshitaka Ehara,et al.  Relaxor-ferroelectric crossover in ( B i 1 / 2 K 1 / 2 ) Ti O 3 : Origin of the spontaneous phase transition and the effect of an applied external field , 2017 .

[32]  T. Grande,et al.  Local Structure of Disordered Bi0.5K0.5TiO3 Investigated by Pair Distribution Function Analysis and First-Principles Calculations , 2017 .

[33]  T. Grande,et al.  Solid‐State Synthesis and Properties of Relaxor (1−x)BKT–xBNZ Ceramics , 2014 .

[34]  Qing Xu,et al.  Effect of the grain boundary on the dielectric breakdown strength of (Ba0.4Sr0.6)TiO3 paraelectric ceramics with various grain sizes , 2014, 2014 15th International Conference on Electronic Packaging Technology.

[35]  T. Grande,et al.  Polarization and strain response in Bi0.5K0.5TiO3-BiFeO3 ceramics , 2012 .

[36]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[37]  D. Suvorov,et al.  The thermal decomposition of K0.5Bi0.5TiO3 ceramics , 2009 .

[38]  S. Lushnikov,et al.  Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3 , 2000 .

[39]  B. Chakoumakos,et al.  High-temperature phase transitions in SrHfO 3 , 1999 .

[40]  N. Setter,et al.  The contribution of structural disorder to diffuse phase transitions in ferroelectrics , 1980 .

[41]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[42]  X. Chao,et al.  Excellent energy storage and discharge performances in Na1/2Bi1/2TiO3-based ergodic relaxors by enlarging [AO12] cages , 2022, Journal of Materials Chemistry C.

[43]  X. Ren,et al.  A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics , 2022 .

[44]  T. Fujita,et al.  Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application , 2022, Chemical Engineering Journal.

[45]  Longtu Li,et al.  Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design , 2021, Journal of Materials Chemistry A.

[46]  Chengtao Yang,et al.  Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications , 2021 .

[47]  X. Tan,et al.  Giant Strains in Non‐Textured (Bi1/2Na1/2)TiO3‐Based Lead‐Free Ceramics , 2016, Advanced materials.