An optimisation geometry framework for the Rayleigh quotient

This paper briefly introduces optimisation geometry, a method based on family of functions that proposes to solve complex optimisation problems with continuation methods and pre-computed points. As an illustration, the problem of tracking eigenvectors is presented, based on the Rayleigh quotient, and conditions under which the proposed approach is operational are detailed.

[1]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[2]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[3]  John M. Lee Manifolds and Differential Geometry , 2009 .

[4]  Seungwon Choi,et al.  Adaptive antenna array for direction-of-arrival estimation utilizing the conjugate gradient method , 1995, Signal Process..

[5]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[6]  W. Marsden I and J , 2012 .

[7]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[8]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[9]  Jonathan H. Manton,et al.  Optimisation Geometry , 2012 .

[10]  Robin Wilson,et al.  Mathematical Conversations - Selections From The Mathematical Intelligencer , 2000 .

[11]  Marco Congedo,et al.  Riemannian Optimization and Approximate Joint Diagonalization for Blind Source Separation , 2018, IEEE Transactions on Signal Processing.

[12]  Tien-Yien Li,et al.  Homotopy algorithm for symmetric eigenvalue problems , 1989 .

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  M. Chu A note on the homotopy method for linear algebraic eigenvalue problems , 1988 .

[15]  Bohua Zhan,et al.  Smooth Manifolds , 2021, Arch. Formal Proofs.

[16]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.