Unsupervised Object Annotation through Context Analysis

The goal of object level annotation is to locate and identify instances of an object category within an image. Nowadays, Most of the current object level annotation systems annotate the object according to the visual appearance in the image. Recognizing an object in an image based visual appearance yield ambiguity in object detection due to appearance confusion for example “sky” object may be annotated as “water” according to similarity in visual appearance. As a result, these systems don’t recognize the objects in an image accurately due to the lack of scene context. In the task of visual object recognition, scene context can play important role in resolving the ambiguities in object detection. In order to solve the ambiguity problem, this paper presents a new technique for a context based object level annotation that considers both the semantic context and spatial context analysis to reduce ambiguous in object annotation. General Terms Image Annotation and Retrieval

[1]  Dong Liu,et al.  Retagging social images based on visual and semantic consistency , 2010, WWW '10.

[2]  Wei-Ying Ma,et al.  AnnoSearch: Image Auto-Annotation by Search , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  B. S. Manjunath,et al.  Cortina: a system for large-scale, content-based web image retrieval , 2004, MULTIMEDIA '04.

[4]  Pietro Perona,et al.  Learning Object Categories From Internet Image Searches , 2010, Proceedings of the IEEE.

[5]  Dong Liu,et al.  Multiple-Instance Active Learning for Image Categorization , 2009, MMM.

[6]  Wei-Ying Ma,et al.  Multi-graph enabled active learning for multimodal web image retrieval , 2005, MIR '05.

[7]  Dong Liu,et al.  Content-based tag processing for Internet social images , 2010, Multimedia Tools and Applications.

[8]  Pinar Duygulu Sahin,et al.  Automatic tag expansion using visual similarity for photo sharing websites , 2010, Multimedia Tools and Applications.

[9]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[10]  Bin Wang,et al.  A graph-based image annotation framework , 2008, Pattern Recognit. Lett..

[11]  Clement H. C. Leung,et al.  Automatic Semantic Annotation of Real-World Web Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[13]  Yiannis Kompatsiaris,et al.  Semi-supervised object recognition using flickr images , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[14]  Xian-Sheng Hua,et al.  Learning semantic distance from community-tagged media collection , 2009, MM '09.

[15]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Bipin C. Desai,et al.  A unified image retrieval framework on local visual and semantic concept-based feature spaces , 2009, J. Vis. Commun. Image Represent..

[17]  Gustavo Carneiro,et al.  Supervised Learning of Semantic Classes for Image Annotation and Retrieval , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Adil Alpkocak,et al.  An expansion and reranking approach for annotation-based image retrieval from Web , 2011, Expert Syst. Appl..

[19]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[20]  Lei Zhang,et al.  Image annotation by incorporating word correlations into multi-class SVM , 2011, Soft Comput..

[21]  Enrico Motta,et al.  Image Annotation Refinement Using Web-Based Keyword Correlation , 2009, SAMT.

[22]  Jianmin Wang,et al.  Automatic Image Annotations by Mining Web Image Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[23]  Dong Liu,et al.  Unified tag analysis with multi-edge graph , 2010, ACM Multimedia.

[24]  Fang Yan,et al.  A New Web Image Searching Engine by Using SIFT Algorithm , 2009, 2009 International Conference on Web Information Systems and Mining.

[25]  Yi Li,et al.  Consistent line clusters for building recognition in CBIR , 2002, Object recognition supported by user interaction for service robots.

[26]  Kebin Jia,et al.  A Novel Image Retrieval Algorithm Based on ROI by Using SIFT Feature Matching , 2008, 2008 International Conference on MultiMedia and Information Technology.

[27]  Latifur Khan,et al.  Improving Image Annotations Using WordNet , 2005, Multimedia Information Systems.

[28]  Bernt Schiele,et al.  An Implicit Shape Model for Combined Object Categorization and Segmentation , 2006, Toward Category-Level Object Recognition.

[29]  Salvatore Tabbone,et al.  Modeling, Classifying and Annotating Weakly Annotated Images Using Bayesian Network , 2009, 2009 10th International Conference on Document Analysis and Recognition.

[30]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[31]  Yong Wang,et al.  Refining image annotation using contextual relations between words , 2007, CIVR '07.

[32]  Shumeet Baluja,et al.  VisualRank: Applying PageRank to Large-Scale Image Search , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Jason Weston,et al.  Large scale image annotation: learning to rank with joint word-image embeddings , 2010, Machine Learning.

[34]  Long Zhu,et al.  Unsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Bin Li,et al.  Semi-automatic dynamic auxiliary-tag-aided image annotation , 2010, Pattern Recognit..

[36]  Naixue Xiong,et al.  Using Multi-Modal Semantic Association Rules to fuse keywords and visual features automatically for Web image retrieval , 2011, Inf. Fusion.

[37]  Farshad Fotouhi,et al.  I/sup 2/ A: an interactive image annotation system , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[38]  Chuan-Yu Chang,et al.  Semantic analysis of real-world images using support vector machine , 2009, Expert Syst. Appl..

[39]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[40]  Nassir Salman,et al.  Image Segmentation Based on Watershed and Edge Detection Techniques , 2006, Int. Arab J. Inf. Technol..

[41]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[42]  Winston H. Hsu,et al.  Search-Based Automatic Image Annotation via Flickr Photos Using Tag Expansion , 2010, ICASSP.

[43]  Yueting Zhuang,et al.  Multiple hypergraph clustering of web images by mining Word2Image correlations , 2010 .