Bounds on the Geometric Complexity of Optimal Centroidal Voronoi Tesselations in 3D

Gersho’s conjecture in 3D asserts the asymptotic periodicity and structure of the optimal centroidal Voronoi tessellation. This relatively simple crystallization problem remains to date open. We prove bounds on the geometric complexity of optimal centroidal Voronoi tessellations as the number of generators tends to infinity. Combined with an approach of Gruber in 2D, these bounds reduce the resolution of the 3D Gersho’s conjecture to a finite, albeit very large, computation of an explicit convex problem in finitely many variables.

[1]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[2]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[3]  Rex A. Dwyer,et al.  The Expected Number of k-Faces of a Voronoi Diagram , 1993 .

[4]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[5]  Charles Radin,et al.  LOW TEMPERATURE AND THE ORIGIN OF CRYSTALLINE SYMMETRY , 1987 .

[6]  Charles Radin,et al.  The ground state for sticky disks , 1980 .

[7]  Bernhard Schmitzer,et al.  Semi-discrete unbalanced optimal transport and quantization , 2018, 1808.01962.

[8]  On the Crystallization of 2D Hexagonal Lattices , 2009 .

[9]  Guy Bouchitté,et al.  Asymptotic analysis of a class of optimal location problems , 2011 .

[10]  M. Viazovska The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[11]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[12]  P. Gruber,et al.  Optimum Quantization and Its Applications , 2004 .

[13]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[14]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[15]  P. Gruber,et al.  A short analytic proof of Fejes Tóth's theorem on sums of moments , 1999 .

[16]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[17]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[18]  A. Blokhuis SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .

[19]  Benoît R. Kloeckner Approximation by finitely supported measures , 2010, 1003.1035.

[20]  Mathieu Lewin,et al.  The Crystallization Conjecture: A Review , 2015, 1504.01153.

[21]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[22]  D. Weaire,et al.  A counter-example to Kelvin's conjecture on minimal surfaces , 1994 .

[23]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[24]  Henry Cohn,et al.  Universal optimality of the $E_8$ and Leech lattices and interpolation formulas , 2019, Annals of Mathematics.

[25]  Florian Theil,et al.  Face-Centered Cubic Crystallization of Atomistic Configurations , 2014, 1407.0692.

[26]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[27]  C. Villani Optimal Transport: Old and New , 2008 .

[28]  P. Smereka,et al.  Crystallization for a Brenner-like Potential , 2015, 1512.04489.

[29]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[30]  Thomas C. Hales,et al.  The Honeycomb Conjecture , 1999, Discret. Comput. Geom..

[31]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .