Evaluating properties of variable sampling interval control charts

Standard fixed sampling interval (FSI) control charts take samples from a process at fixed length sampling intervals for purposes of detecting changes in the peocess that may affect the quality of the output. Variable sampling interval (VSI) control charts vary the sampling interval as a function of what is observed from the process and can detect process changes faster than FSI control charts. Evaluation of properties of VSI control charts requires extensions of methods that have been developed for FSI control Control charts. A unified treatment of two widely used methods, the Markov chain method and the integral equation method. is given for VSI control charts.This unified treatment includes some results which are new in the FSI case. The new methods are used for the numerical evaluation of propertics of exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts.Some general optimality results for the choice fo the sampling intervals are also given.

[1]  D. Montgomery,et al.  A Combined Adaptive Sample Size and Sampling Interval X Control Scheme , 1994 .

[2]  Douglas C. Montgomery,et al.  ADAPTIVE SAMPLING ENHANCEMENTS FOR SHEWHART CONTROL CHARTS , 1993 .

[3]  Marion R. Reynolds,et al.  Multiple means shewhart charts using variable sampling intervals , 1993 .

[4]  George C. Runger,et al.  Adaptative sampling for process control , 1991 .

[5]  Matoteng M. Ncube,et al.  Variable sampling interval combined Shewhart-cumulative score quality control procedure , 1991 .

[6]  Charles W. Champ,et al.  A generalized quality control procedure , 1991 .

[7]  U. Rendtel,et al.  Cusum-schemes with variable sampling intervals and sample sizes , 1990 .

[8]  J. C. Arnold,et al.  [CUSUM Charts with Variable Sampling Intervals]: Response , 1990 .

[9]  William H. Woodall,et al.  CUSUM charts with variable sampling intervals , 1990 .

[10]  Y. Ritov Decision Theoretic Optimality of the Cusum Procedure , 1990 .

[11]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[12]  Stephen V. Crowder,et al.  Design of Exponentially Weighted Moving Average Schemes , 1989 .

[13]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[14]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[15]  Emmanuel Yashchin,et al.  Some aspects of the theory of statistical control schemes , 1987 .

[16]  Ronald B. Crosier,et al.  A new two-sided cumulative sum quality control scheme , 1986 .

[17]  William H. Woodall,et al.  The design of CUSUM quality control charts , 1986 .

[18]  Emmanuel Yashchin,et al.  On the Analysis and Design of CUSUM-Shewhart Control Schemes , 1985, IBM J. Res. Dev..

[19]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[20]  W. Woodall On the Markov Chain Approach to the Two-Sided CUSUM Procedure , 1984 .

[21]  D. R. Jensen,et al.  Markovian Time-Delay Sampling Policies. , 1980 .

[22]  S. Smeach,et al.  Further aspects of a Markovian sampling policy for water quality monitoring. , 1977, Biometrics.

[23]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[24]  J. C. Arnold A Markovian Sampling Policy Applied to Water Quality Monitoring of Streams , 1970 .

[25]  E. Seneta,et al.  On Quasi-Stationary distributions in absorbing discrete-time finite Markov chains , 1965, Journal of Applied Probability.

[26]  K. W. Kemp,et al.  Sampling inspection of continuous processes with no autocorrelation between successive results , 1960 .

[27]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[28]  Raid W. Amin,et al.  A Robustness Study of Charts with Variable Sampling Intervals , 1993 .

[29]  Rohan Hemasinha,et al.  The switching behavior of charts with variable sampling intervals , 1993 .

[30]  James M. Lucas,et al.  Exponentially weighted moving average control schemes with variable sampling intervals , 1992 .

[31]  Timothy S. Vaughan,et al.  Variable sampling interval np process control chart , 1992 .

[32]  Raid W. Amin,et al.  Improved switching rules in control procedures using variable sampling intervals , 1991 .

[33]  Amal K. Shamma,et al.  A double exponentially weigiited moving average control procedure with variable sampling intervals , 1991 .

[34]  Charles W. Champ,et al.  A a comparison of the markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts , 1991 .

[35]  Marion R. Reynolds,et al.  Variable sampling intervals for multiparameter shewhart charts , 1989 .

[36]  Marion R. Reynolds,et al.  Chart with runs and variable sampling intervals , 1988 .

[37]  James M. Lucas,et al.  The Design and Use of V-Mask Control Schemes , 1976 .

[38]  Van Dobben de Bruyn Cumulative sum test : theory and practice , 1968 .