Cubic vertex-transitive graphs on up to 1280 vertices

A graph is called cubic and tetravalent if all of its vertices have valency 3 and 4, respectively. It is called vertex-transitive and arc-transitive if its automorphism group acts transitively on its vertex-set and on its arc- set, respectively. In this paper, we combine some new theoretical results with computer calculations to construct all cubic vertex-transitive graphs of order at most 1280. In the process, we also construct all tetravalent arc-transitive graphs of order at most 640.

[1]  Trivalent non-symmetric vertex-transitive graphs of order at most 150 , 2008 .

[2]  J. Sirán,et al.  Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .

[3]  Caiheng Li Semiregular automorphisms of cubic vertex transitive graphs , 2008 .

[4]  Brendan D. McKay,et al.  Vertex-transitive graphs which are not Cayley graphs, I , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[5]  Peter M. Neumann,et al.  AN ENUMERATION THEOREM FOR FINITE GROUPS , 1969 .

[6]  Primoz Potocnik,et al.  A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2) , 2009, Eur. J. Comb..

[7]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[8]  Geoffrey Exoo,et al.  Cayley Cages , 2013 .

[9]  Peter J. Cameron,et al.  Semiregular automorphisms of vertex-transitive cubic graphs , 2006, Eur. J. Comb..

[10]  Eyal Loz,et al.  New record graphs in the degree-diameter problem , 2008, Australas. J Comb..

[11]  Steve Wilson,et al.  Arc-transitive cycle decompositions of tetravalent graphs , 2008, J. Comb. Theory, Ser. B.

[12]  Chris D. Godsil,et al.  On the Automorphism Groups of almost all Cayley Graphs , 1982, Eur. J. Comb..

[13]  H. S. M. Coxeter,et al.  ZERO-SYMMETRIC GRAPHS OF GIRTH 3 , 1981 .

[14]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.

[15]  Robin J. Wilson,et al.  An Atlas of Graphs , 1999 .

[16]  D. Djoković,et al.  A class of finite group-amalgams , 1980 .

[17]  Primoz Potocnik,et al.  Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs , 2010, J. Comb. Theory, Ser. B.

[18]  Cheryl E. Praeger,et al.  A Characterization of a Class of Symmetric Graphs of Twice Prime Valency , 1989, Eur. J. Comb..

[19]  Bettina Eick,et al.  CONSTRUCTING AUTOMORPHISM GROUPS OF p-GROUPS , 2002 .

[20]  Marston D. E. Conder,et al.  Automorphism groups of symmetric graphs of valency 3 , 1989, J. Comb. Theory, Ser. B.

[21]  Primoz Potocnik,et al.  TETRAVALENT ARC-TRANSITIVE GRAPHS WITH UNBOUNDED VERTEX-STABILIZERS , 2010, Bulletin of the Australian Mathematical Society.

[22]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Dragan Marusic,et al.  Hamiltonicity of cubic Cayley graphs , 2005 .

[24]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[25]  R. M. Foster,et al.  Geometrical circuits of electrical networks , 1932, Electrical Engineering.

[26]  László Babai,et al.  Isomorphism problem for a class of point-symmetric structures , 1977 .

[27]  Gary L. Miller,et al.  Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.

[28]  G. Sabidussi On a class of fixed-point-free graphs , 1958 .

[29]  Cui Zhang,et al.  On cubic non-Cayley vertex-transitive graphs , 2012, J. Graph Theory.

[30]  Peter Lorimer Vertex-transitive Graphs of Valency 3 , 1983, Eur. J. Comb..