Cubic vertex-transitive graphs on up to 1280 vertices
暂无分享,去创建一个
Primoz Potocnik | Pablo Spiga | Gabriel Verret | P. Potočnik | P. Spiga | Gabriel Verret | Pablo Spiga
[1] Trivalent non-symmetric vertex-transitive graphs of order at most 150 , 2008 .
[2] J. Sirán,et al. Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .
[3] Caiheng Li. Semiregular automorphisms of cubic vertex transitive graphs , 2008 .
[4] Brendan D. McKay,et al. Vertex-transitive graphs which are not Cayley graphs, I , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[5] Peter M. Neumann,et al. AN ENUMERATION THEOREM FOR FINITE GROUPS , 1969 .
[6] Primoz Potocnik,et al. A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2) , 2009, Eur. J. Comb..
[7] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[8] Geoffrey Exoo,et al. Cayley Cages , 2013 .
[9] Peter J. Cameron,et al. Semiregular automorphisms of vertex-transitive cubic graphs , 2006, Eur. J. Comb..
[10] Eyal Loz,et al. New record graphs in the degree-diameter problem , 2008, Australas. J Comb..
[11] Steve Wilson,et al. Arc-transitive cycle decompositions of tetravalent graphs , 2008, J. Comb. Theory, Ser. B.
[12] Chris D. Godsil,et al. On the Automorphism Groups of almost all Cayley Graphs , 1982, Eur. J. Comb..
[13] H. S. M. Coxeter,et al. ZERO-SYMMETRIC GRAPHS OF GIRTH 3 , 1981 .
[14] W. T. Tutte. On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.
[15] Robin J. Wilson,et al. An Atlas of Graphs , 1999 .
[16] D. Djoković,et al. A class of finite group-amalgams , 1980 .
[17] Primoz Potocnik,et al. Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs , 2010, J. Comb. Theory, Ser. B.
[18] Cheryl E. Praeger,et al. A Characterization of a Class of Symmetric Graphs of Twice Prime Valency , 1989, Eur. J. Comb..
[19] Bettina Eick,et al. CONSTRUCTING AUTOMORPHISM GROUPS OF p-GROUPS , 2002 .
[20] Marston D. E. Conder,et al. Automorphism groups of symmetric graphs of valency 3 , 1989, J. Comb. Theory, Ser. B.
[21] Primoz Potocnik,et al. TETRAVALENT ARC-TRANSITIVE GRAPHS WITH UNBOUNDED VERTEX-STABILIZERS , 2010, Bulletin of the Australian Mathematical Society.
[22] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] Dragan Marusic,et al. Hamiltonicity of cubic Cayley graphs , 2005 .
[24] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[25] R. M. Foster,et al. Geometrical circuits of electrical networks , 1932, Electrical Engineering.
[26] László Babai,et al. Isomorphism problem for a class of point-symmetric structures , 1977 .
[27] Gary L. Miller,et al. Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.
[28] G. Sabidussi. On a class of fixed-point-free graphs , 1958 .
[29] Cui Zhang,et al. On cubic non-Cayley vertex-transitive graphs , 2012, J. Graph Theory.
[30] Peter Lorimer. Vertex-transitive Graphs of Valency 3 , 1983, Eur. J. Comb..