The roots of the independence polynomial of a clawfree graph

The independence polynomial of a graph G is the polynomial @?"Ax^|^A^|, summed over all independent subsets A@?V(G). We prove that if G is clawfree, then all the roots of its independence polynomial are real. This extends a theorem of Heilmann and Lieb [O.J. Heilmann, E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972) 190-232], answering a question posed by Hamidoune [Y.O. Hamidoune, On the numbers of independent k-sets in a clawfree graph, J. Combin. Theory Ser. B 50 (1990) 241-244] and Stanley [R.P. Stanley, Graph colorings and related symmetric functions: Ideas and applications, Discrete Math. 193 (1998) 267-286].

[1]  Xueliang Li,et al.  Clique polynomials and independent set polynomials of graphs , 1994, Discret. Math..

[2]  C. Rheinboldt N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .

[3]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[4]  Jean-Pierre Dedieu,et al.  Obreschkoff's theorem revisited: what convex sets are contained in the set of hyperbolic polynomials? , 1992 .

[5]  Yahya Ould Hamidoune On the numbers of independent k-sets in a claw free graph , 1990, J. Comb. Theory, Ser. B.

[6]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[7]  Jason I. Brown,et al.  Roots of Independence Polynomials of Well Covered Graphs , 2000 .

[8]  Richard P. Stanley,et al.  Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..

[9]  David C. Fisher,et al.  Dependence polynomials , 1990, Discret. Math..

[10]  Jason I. Brown,et al.  On the Location of Roots of Independence Polynomials , 2004 .

[11]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[12]  R. J. Gregorac,et al.  CorrigendumObreschkoff's theorem revisited: What convex sets are contained in the set of hyperbolic polynomials?: Journal of pure and applied algebra 81 (3) (1992) 269–278 , 1994 .

[13]  Jason I. Brown,et al.  Average independence polynomials , 2005, J. Comb. Theory, Ser. B.

[14]  Jason I. Brown,et al.  Bounding the Roots of Independence Polynomials , 2001, Ars Comb..