The roots of the independence polynomial of a clawfree graph
暂无分享,去创建一个
[1] Xueliang Li,et al. Clique polynomials and independent set polynomials of graphs , 1994, Discret. Math..
[2] C. Rheinboldt. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .
[3] Huang Lin,et al. Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.
[4] Jean-Pierre Dedieu,et al. Obreschkoff's theorem revisited: what convex sets are contained in the set of hyperbolic polynomials? , 1992 .
[5] Yahya Ould Hamidoune. On the numbers of independent k-sets in a claw free graph , 1990, J. Comb. Theory, Ser. B.
[6] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .
[7] Jason I. Brown,et al. Roots of Independence Polynomials of Well Covered Graphs , 2000 .
[8] Richard P. Stanley,et al. Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..
[9] David C. Fisher,et al. Dependence polynomials , 1990, Discret. Math..
[10] Jason I. Brown,et al. On the Location of Roots of Independence Polynomials , 2004 .
[11] O. J. Heilmann,et al. Theory of monomer-dimer systems , 1972 .
[12] R. J. Gregorac,et al. CorrigendumObreschkoff's theorem revisited: What convex sets are contained in the set of hyperbolic polynomials?: Journal of pure and applied algebra 81 (3) (1992) 269–278 , 1994 .
[13] Jason I. Brown,et al. Average independence polynomials , 2005, J. Comb. Theory, Ser. B.
[14] Jason I. Brown,et al. Bounding the Roots of Independence Polynomials , 2001, Ars Comb..