High Torque Vane Rheometer for Concrete: Principle and Validation from Rheological Measurements

Abstract A high torque vane rheometer is used to measure the yields stress of cement-based materials. It is shown that this apparatus is suitable for the evaluation of the yield stress of various concretes and mortars in the fresh state in comparison with slump tests realized with ASTM Abrams cone. Then, the rheological properties (yield stress and shear flow behaviour) of a homogeneous kaolin clay suspension are studied with the apparatus and favourably compared with other rheometers and geometries.

[1]  François Bertrand,et al.  Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements , 2010, 1007.5446.

[2]  G. Georgiou,et al.  Determination of the Rheological Parameters of Self-Compacting Concrete Matrix Using Slump Flow Test , 2010 .

[3]  Peter Domone,et al.  Comparison of concrete rheometers: International tests at MBT (Cleveland OH, USA) in May 2003 , 2004 .

[4]  Surendra P. Shah,et al.  A generalized approach for the determination of yield stress by slump and slump flow , 2004 .

[5]  David W. Fowler,et al.  "A New, Portable Rheometer for Fresh Self-Consolidating Concrete" , 2006, SP-233: Workability of SCC: Roles of Its Constituents and Measurement Techniques.

[6]  Nicolas Roussel,et al.  Effect of Coarse Particle Volume Fraction on the Yield Stress and Thixotropy of Cementitious Materials , 2008 .

[7]  W. R. Schowalter,et al.  Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments , 1998 .

[8]  Lucie Vandewalle,et al.  Integration Approach of the Couette Inverse Problem of Powder Type Self-Compacting Concrete in a Wide-gap Concentric Cylinder Rheometer: Part II. Influence of Mineral Additions and Chemical Admixtures on the Shear Thickening Flow Behaviour , 2009 .

[9]  Christophe Lanos,et al.  Shear flow curve in mixing systems—A simplified approach , 2008 .

[10]  Nicolas Roussel A physical model for the prediction of lateral stress exerted by self-compacting concrete on formwork , 2006 .

[11]  Nicolas Roussel,et al.  The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC , 2007 .

[12]  Christophe Lanos,et al.  The Back Extrusion Test as a Technique for Determining the Rheological and Tribological Behaviour of Yield Stress Fluids at Low Shear Rates , 2011 .

[13]  David V. Boger Yield stress measurement , 1994 .

[14]  Peter Domone,et al.  Developments of the two-point workability test for high-performance concrete , 1999 .

[15]  G. H. Meeten,et al.  The use of the vane to measure the shear modulus of linear elastic solids , 1991 .

[16]  J. Sherwood,et al.  Transient flow of viscoelastic, thixotropic fluid in a vane rheometer or infinite slot , 2008 .

[17]  Christophe Lanos,et al.  Extrusion Criterion for Firm Cement-based Materials , 2008 .

[18]  G. H. Meeten,et al.  Vane rheometry of bentonite gels , 1991 .

[19]  David V. Boger,et al.  A fifty cent rheometer for yield stress measurement , 1996 .

[20]  Christophe Lanos,et al.  Processing the Vane Shear Flow Data from Couette Analogy , 2008 .

[21]  N. Roussel,et al.  Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid , 2006 .

[22]  Christophe Lanos,et al.  Mortar physical properties evolution in extrusion flow , 2007 .

[23]  Nicolas Roussel,et al.  “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow , 2005 .

[24]  Howard A. Barnes,et al.  Rotating vane rheometry — a review , 2001 .

[25]  R. Maglione,et al.  Wall Slip Phenomenon Assessment of Yield Stress Pseudoplastic Fluids in Couette Geometry , 2010 .

[26]  Sofiane Amziane,et al.  A novel settling and structural build-up measurement method , 2008 .

[27]  C. Baravian,et al.  Vane Rheometry with a Large, Finite Gap , 2002 .

[28]  Nicolas Roussel,et al.  Correlation between Yield Stress and Slump: Comparison between Numerical Simulations and Concrete Rheometers Results , 2005 .

[29]  H. A. Barnes,et al.  The vane‐in‐cup as a novel rheometer geometry for shear thinning and thixotropic materials , 1990 .

[30]  Nicolas Roussel,et al.  A thixotropy model for fresh fluid concretes: Theory, validation and applications , 2006 .

[31]  Christophe Lanos,et al.  Couette Rheometry from Differential Approach: Comparative Study and Experimental Application , 2008 .

[32]  John E. Sader,et al.  Experimental validation of incipient failure of yield stress materials under gravitational loading , 2003 .

[33]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[34]  A. Kaci,et al.  Rheological Behaviour of Render Mortars , 2008 .

[35]  C. Hu,et al.  RHEOLOGIE DES BETONS FLUIDES , 1995 .

[36]  Christophe Lanos,et al.  Processing the Couette viscometry data using a Bingham approximation in shear rate calculation , 2008 .

[37]  Kamal H. Khayat,et al.  Effect of section width and casting rate on variations of formwork pressure of self-consolidating concrete , 2005 .

[38]  D. V. Boger,et al.  Direct Yield Stress Measurement with the Vane Method , 1985 .

[39]  Christophe Lanos,et al.  Vers une réelle rhéométrie adaptée aux bétons frais , 2009 .