Double bracket flows, toda flows and rigid body toda

In this paper we consider certain gradient and Hamiltonian flows on adjoint orbits that generalize the Toda lattice flow. The Toda lattice can be shown to be a gradient flow on a suitable orbit. Here we discuss related gradient flows and consider the generalization of the Toda lattice flow to the Toda rigid body flow.

[1]  J. C. Simo,et al.  The heavy top: a geometric treatment , 1992 .

[2]  Tudor S. Ratiu,et al.  The C. Neumann problem as a completely integrable system on an adjoint orbit , 1981 .

[3]  A. G. Reyman,et al.  Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems , 1994 .

[4]  W. Symes Hamiltonian group actions and integrable systems , 1980 .

[5]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[6]  Carlos Tomei,et al.  Ordinary di erential equations for the symmetric eigenvalue problem , 1983 .

[7]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[8]  A. Fomenko,et al.  Geometry of Poisson brackets and methods of Liouville integration of systems on symmetric spaces , 1987 .

[9]  S. Manakov,et al.  Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body , 1976 .

[10]  日本物理学会,et al.  Supplement of the Progress of theoretical physics , 1955 .

[11]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[12]  J. Moser Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .

[13]  Anatoliĭ Timofeevich Fomenko,et al.  Integrability of Euler Equations on Semisimple Lie Algebras , 1982 .

[14]  Tudor S. Ratiu,et al.  The motion of the free $n$-dimensional rigid body , 1980 .

[15]  R. Brockett Least squares matching problems , 1989 .

[16]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[17]  J. Szenthe,et al.  Topics in Differential Geometry , 1988 .

[18]  Carlos Tomei,et al.  The Toda flow on a generic orbit is integrable , 1984 .

[19]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[20]  Peter E. Crouch,et al.  Double Bracket Equations and Geodesic Flows on Symmetric Spaces , 1997 .

[21]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[22]  Roger W. Brockett The double bracket equation as the solution of a variational problem , 1994 .

[23]  T. Ratiu,et al.  A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra , 1990 .

[24]  R. Brockett,et al.  Completely integrable gradient flows , 1992 .

[25]  Jerrold E. Marsden,et al.  Hamiltonian Reduction by Stages , 2007 .

[26]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[27]  R. Brockett,et al.  A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map , 1990 .

[28]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[29]  Anatoliĭ Timofeevich Fomenko,et al.  Generalized Liouville method of integration of Hamiltonian systems , 1978 .

[30]  Morikazu Toda,et al.  Waves in Nonlinear Lattice , 1970 .

[31]  Anatoliĭ Timofeevich Fomenko,et al.  On the integration of the Euler equations on semisimple Lie algebras , 1976 .

[32]  A A Arhangel'skiĭ COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS ON A GROUP OF TRIANGULAR MATRICES , 1980 .

[33]  Robert N. Cahn,et al.  Semi-Simple Lie Algebras and Their Representations , 1984 .

[34]  P. Deift,et al.  Ordinary differential equations and the symmetric eigenvalue problem , 1983 .

[35]  J. Moser,et al.  Geometry of Quadrics and Spectral Theory , 1980 .

[36]  William W. Symes,et al.  Systems of Toda type, inverse spectral problems, and representation theory , 1980 .

[37]  V V Trofimov,et al.  EULER EQUATIONS ON BOREL SUBALGEBRAS OF SEMISIMPLE LIE ALGEBRAS , 1980 .

[38]  T. Ratiu,et al.  Clebsch optimal control formulation in mechanics , 2011 .

[39]  Carlos Tomei,et al.  Loop Groups, Discrete Versions of Some Classical Integrable Systems, and Rank 2 Extensions , 1993 .

[40]  Tudor S. Ratiu,et al.  The Toda PDE and the geometry of the diffeomorphism group of the annulus , 1996 .