High speed parallel kinematic manipulator state estimation from legs observation

To control dynamics of a parallel robot, we should measure the state feedback accurately and fast. In this paper, we show how to estimate positions and velocities simultaneously (i.e., the state feedback) at a reasonable accuracy and speed. We did this using only the sequential visual contours of the legs. A single-iteration virtual visual servoing scheme regulates rapidly an error of these contours. We validated this theory, a step to control parallel robots at high speed by their leg kinematics, with simulations and experiments.

[1]  Philippe Martinet,et al.  A Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments , 2009, Int. J. Robotics Res..

[2]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[3]  Philippe Martinet,et al.  Dynamic control of the Quattro robot by the leg edges , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Philippe Martinet,et al.  3D pose and velocity visual tracking based on sequential region of interest acquisition , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Ulrich Muehlmann,et al.  A new high speed cmos camera for real-time tracking applications , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  Philippe Martinet,et al.  Efficient high-speed vision-based computed torque control of the orthoglide parallel robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[7]  Jacques Gangloff,et al.  High-speed visual servoing of a 6-d.o.f. manipulator using multivariable predictive control , 2003, Adv. Robotics.

[8]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[9]  François Berry,et al.  Embedded Active Vision System Based on an FPGA Architecture , 2007, EURASIP J. Embed. Syst..

[10]  Peter Corke,et al.  Dynamic Issues in Robot Visual-Servo Systems , 1996 .

[11]  Philippe Martinet,et al.  Dynamic visual servoing from sequential regions of interest acquisition , 2012, Int. J. Robotics Res..

[12]  Philippe Martinet,et al.  Image-based Visual Servoing of a Gough—Stewart Parallel Manipulator using Leg Observations , 2007, Int. J. Robotics Res..

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  Rs Roel Pieters,et al.  Visual Servo Control , 2012 .

[15]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Markus Vincze,et al.  Dynamics and system performance of visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Anastasis A. Sofokleous,et al.  Review: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia , 2005, Comput. J..

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Masatoshi Ishikawa,et al.  1 ms column parallel vision system and its application of high speed target tracking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Philippe Martinet,et al.  Simultaneous Object Pose and Velocity Computation Using a Single View from a Rolling Shutter Camera , 2006, ECCV.

[22]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[23]  Philippe Martinet,et al.  Unifying Kinematic Modeling, Identification, and Control of a Gough–Stewart Parallel Robot Into a Vision-Based Framework , 2006, IEEE Transactions on Robotics.

[24]  Éric Marchand,et al.  Virtual Visual Servoing: a framework for real‐time augmented reality , 2002, Comput. Graph. Forum.