Novel fabrication techniques for ultra-thin silicon based flexible electronics

Flexible electronics offer a multitude of advantages, such as flexibility, lightweight property, portability, and high durability. These unique properties allow for seamless applications to curved and soft surfaces, leading to extensive utilization across a wide range of fields in consumer electronics. These applications, for example, span integrated circuits, solar cells, batteries, wearable devices, bio-implants, soft robotics, and biomimetic applications. Recently, flexible electronic devices have been developed using a variety of materials such as organic, carbon-based, and inorganic semiconducting materials. Silicon (Si) owing to its mature fabrication process, excellent electrical, optical, thermal properties, and cost efficiency, remains a compelling material choice for flexible electronics. Consequently, the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays. The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain, thereby enhancing flexibility while preserving its exceptional properties. This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.

[1]  Zhibo Gao,et al.  Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells , 2023, Solar Energy Materials and Solar Cells.

[2]  K. Yu,et al.  A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations , 2023, Science advances.

[3]  Xidi Sun,et al.  Recent advances in bioinspired vision sensor arrays based on advanced optoelectronic materials , 2023, APL Materials.

[4]  Won Kyung Min,et al.  Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics. , 2023, Small.

[5]  S. Choudhury,et al.  Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin , 2023, Science.

[6]  Thanh Nho Do,et al.  Engineering Route for Stretchable, 3D Microarchitectures of Wide Bandgap Semiconductors for Biomedical Applications , 2023, Advanced Functional Materials.

[7]  Yanyan Fu,et al.  Flexible solar cells based on foldable silicon wafers with blunted edges , 2023, Nature.

[8]  M. Shin,et al.  Flexible and transparent thin-film light-scattering photovoltaics about fabrication and optimization for bifacial operation , 2023, npj Flexible Electronics.

[9]  J. Coleman,et al.  High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides , 2023, ACS nano.

[10]  Baoxing Xu,et al.  Fabrication of gold-doped crystalline-silicon nanomembrane-based wearable temperature sensor , 2022, STAR protocols.

[11]  L. Kobbelt,et al.  Classification of properties and their relation to chemical bonding: Essential steps toward the inverse design of functional materials , 2022, Science advances.

[12]  Youngmee Jung,et al.  Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers , 2022, npj Flexible Electronics.

[13]  Hong-Goo Kang,et al.  Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces , 2022, Nature Communications.

[14]  M. Caro,et al.  Machine learning based modeling of disordered elemental semiconductors: understanding the atomic structure of a-Si and a-C , 2022, Semiconductor Science and Technology.

[15]  Minmin Luo,et al.  Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities , 2022, Nature Biomedical Engineering.

[16]  Ki Jun Yu,et al.  Ultra‐Thin Flexible Encapsulating Materials for Soft Bio‐Integrated Electronics , 2022, Advanced science.

[17]  Guangqin Gu,et al.  Challenges and advances of organic electrode materials for sustainable secondary batteries , 2022, Exploration.

[18]  Guoying Gu,et al.  High‐Stretchability, Ultralow‐Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines , 2022, Advanced materials.

[19]  Nicole M. Becker,et al.  A Review of Research on the Teaching and Learning of Chemical Bonding , 2022, Journal of Chemical Education.

[20]  M. Saidaminov,et al.  Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact , 2022, Nature Energy.

[21]  Ce Wang,et al.  Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing , 2022, Nano Energy.

[22]  Thi Thu Thuy Nguyen,et al.  Functional Devices from Bottom-Up Silicon Nanowires: A Review , 2022, Nanomaterials.

[23]  M. A. Mohammad,et al.  A flexible piezoresistive strain sensor based on laser scribed graphene oxide on polydimethylsiloxane , 2022, Scientific Reports.

[24]  Yi Shi,et al.  Highly Stretchable High‐Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates , 2022, Advanced science.

[25]  Yunqi Liu,et al.  Advances in flexible organic field-effect transistors and their applications for flexible electronics , 2022, npj Flexible Electronics.

[26]  Shihao Liu,et al.  Flexible organic optoelectronic devices on paper , 2022, iScience.

[27]  Ki Jun Yu,et al.  Flexible InGaP/GaAs Tandem Solar Cells Encapsulated with Ultrathin Thermally Grown Silicon Dioxide as a Permanent Water Barrier and an Antireflection Coating , 2021, ACS Applied Energy Materials.

[28]  R. Dahiya,et al.  High-performance p-channel transistors on flexible substrate using direct roll transfer stamping , 2021, Japanese Journal of Applied Physics.

[29]  Ki Jun Yu,et al.  Ultra‐Low Cost, Facile Fabrication of Transparent Neural Electrode Array for Electrocorticography with Photoelectric Artifact‐Free Optogenetics , 2021, Advanced Functional Materials.

[30]  Baoxing Xu,et al.  Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems , 2021, Nature Communications.

[31]  Jung Woo Lee,et al.  Ultrahigh Sensitive Au‐Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision , 2021, Advanced materials.

[32]  Hee‐eun Song,et al.  Fully Bottom‐Up Waste‐Free Growth of Ultrathin Silicon Wafer via Self‐Releasing Seed Layer , 2021, Advanced materials.

[33]  M. Khayyat Crystalline Silicon Spalling as a Direct Application of Temperature Effect on Semiconductors’ Indentation , 2021, Crystals.

[34]  R. Dahiya,et al.  Direct roll transfer printed silicon nanoribbon arrays based high-performance flexible electronics , 2021, npj Flexible Electronics.

[35]  A. Bonyár,et al.  PDMS Bonding Technologies for Microfluidic Applications: A Review , 2021, Biosensors.

[36]  H. Ryu,et al.  Evaluation of Crystalline Volume Fraction of Laser-Annealed Polysilicon Thin Films Using Raman Spectroscopy and Spectroscopic Ellipsometry , 2021, Micromachines.

[37]  Mana Otani,et al.  Boron-Silicon Film Chemical Vapor Deposition Using Boron Trichloride, Dichlorosilane and Monomethylsilane Gases , 2021 .

[38]  Junzhuan Wang,et al.  Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio , 2021 .

[39]  Güven Kurtuldu,et al.  Insight into crystallization paths in Au–Si eutectic alloy through the energy-temperature diagram , 2021 .

[40]  H. Kang Crystalline Silicon vs. Amorphous Silicon: the Significance of Structural Differences in Photovoltaic Applications , 2021 .

[41]  Yu Wang,et al.  Microfluidics for flexible electronics , 2021 .

[42]  Z. Lou,et al.  Wearable Sensors‐Enabled Human–Machine Interaction Systems: From Design to Application , 2020, Advanced Functional Materials.

[43]  Xiaoshuang Chen,et al.  Recent progress and challenges based on two-dimensional material photodetectors , 2020 .

[44]  N. Gavrilov,et al.  Effect of rapid thermal annealing on damage of silicon matrix implanted by low-energy rhenium ions , 2020 .

[45]  Won Bae Han,et al.  Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants , 2020, NPG Asia Materials.

[46]  M. Perego,et al.  Engineering of the spin on dopant process on silicon on insulator substrate , 2020, Nanotechnology.

[47]  D. Baran,et al.  Flexible Electronics: Status, Challenges and Opportunities , 2020, Frontiers in Electronics.

[48]  Kui‐Qing Peng,et al.  Metal‐Assisted Chemical Etching of Silicon in Oxidizing HF Solutions: Origin, Mechanism, Development, and Black Silicon Solar Cell Application , 2020, Advanced Functional Materials.

[49]  Wei Ling,et al.  The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature , 2020, Advanced science.

[50]  T. Ji,et al.  Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching , 2020, IEEE Electron Device Letters.

[51]  K. Müllen,et al.  Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation , 2020, Nature Communications.

[52]  S. A. Moiz,et al.  Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell , 2020, Energies.

[53]  J. Yi,et al.  Crystallization of Amorphous Silicon via Excimer Laser Annealing and Evaluation of Its Passivation Properties , 2020, Energies.

[54]  Cyrus C. M. Mody,et al.  LITHOGRAPHY , 2020, Between Making and Knowing.

[55]  John A Rogers,et al.  Materials for flexible bioelectronic systems as chronic neural interfaces , 2020, Nature Materials.

[56]  Dong Rip Kim,et al.  Bioresorbable, Miniaturized Porous Silicon Needles on Flexible Water-Soluble Backing for Unobtrusive, Sustained Delivery of Chemotherapy. , 2020, ACS nano.

[57]  Hui Fang,et al.  Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates , 2020, Science Translational Medicine.

[58]  Ming-Chi Tai,et al.  Flexible low-temperature polycrystalline silicon thin-film transistors , 2020 .

[59]  S. Park,et al.  Flexible metal oxide semiconductor devices made by solution methods. , 2020, Chemistry.

[60]  S. Johnston,et al.  Thin-Film Solar Cells with 19% Efficiency by Thermal Evaporation of CdSe and CdTe , 2020 .

[61]  Z. Yao,et al.  Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications , 2020, Nano-micro letters.

[62]  Tomoyuki Yokota,et al.  A conformable imager for biometric authentication and vital sign measurement , 2020 .

[63]  G. Mannino,et al.  Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm , 2019, ACS omega.

[64]  A. Behroudj,et al.  Epitaxial Bottom-up Growth of Silicon Nanowires on Oxidized Silicon by Alloy-Catalyzed Gas-Phase Synthesis. , 2019, Nano letters.

[65]  S. Mohajerzadeh,et al.  Metal-assisted chemical etching of silicon and achieving pore sizes as small as 30 nm by altering gold thickness , 2019, Journal of Vacuum Science & Technology A.

[66]  K. Khalil,et al.  Multilayered models for determining the Young's modulus of thin films by means of Impulse Excitation Technique , 2019, Mechanics of Materials.

[67]  Joo Chuan Yeo,et al.  Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability , 2019, Advanced materials.

[68]  John A Rogers,et al.  Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration , 2019, Proceedings of the National Academy of Sciences.

[69]  Rong Deng,et al.  A techno-economic review of silicon photovoltaic module recycling , 2019, Renewable and Sustainable Energy Reviews.

[70]  G. Cuniberti,et al.  Hybrid Silicon Nanowire Devices and Their Functional Diversity , 2019, Advanced science.

[71]  Ki Jun Yu,et al.  Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications , 2019, Nanomaterials.

[72]  Yihui Zhang,et al.  Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care , 2019, Science.

[73]  Wei Gao,et al.  Flexible Electronics toward Wearable Sensing. , 2019, Accounts of chemical research.

[74]  T. Itoh,et al.  Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter , 2019, Scientific Reports.

[75]  Haidong Yu,et al.  Flexible, transparent nanocellulose paper-based perovskite solar cells , 2019, npj Flexible Electronics.

[76]  Hyunhyub Ko,et al.  Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance , 2019, Journal of Materials Chemistry A.

[77]  Jianfei Sun,et al.  BIOMIMETICS , 2018, Fundamentals of Nanotechnology.

[78]  Dong Rip Kim,et al.  Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules , 2018, Science Advances.

[79]  John A Rogers,et al.  Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. , 2018, ACS nano.

[80]  Jaehoon Kim,et al.  Wafer-Scale Ultrathin, Single-Crystal Si and GaAs Photocathodes for Photoelectrochemical Hydrogen Production. , 2018, ACS applied materials & interfaces.

[81]  Jihyeon Janel Lee,et al.  Transparent bifacial a-Si:H solar cells employing silver oxide embedded transparent rear electrodes for improved transparency , 2018, Solar Energy.

[82]  Pedro P. Irazoqui,et al.  Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics , 2018, Proceedings of the National Academy of Sciences.

[83]  Wen-Di Li,et al.  Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. , 2018, Advanced drug delivery reviews.

[84]  Feng Yan,et al.  Organic Flexible Electronics , 2018, Small Methods.

[85]  Ferdiansjah,et al.  Analysis of Back Surface Field (BSF) Performance in P-Type And N-Type Monocrystalline Silicon Wafer , 2018 .

[86]  Ravinder Dahiya,et al.  Ultra-thin chips for high-performance flexible electronics , 2018, npj Flexible Electronics.

[87]  Volker L. Deringer,et al.  Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.

[88]  B. Cui,et al.  Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications , 2018 .

[89]  Hongkun Park,et al.  Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. , 2018, Accounts of chemical research.

[90]  W. Hu,et al.  Organic semiconductor crystals. , 2018, Chemical Society reviews.

[91]  Zhong Lin Wang,et al.  Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing , 2018, Nature Communications.

[92]  Hyunhyub Ko,et al.  Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film. , 2017, ACS applied materials & interfaces.

[93]  Yei Hwan Jung,et al.  Origami silicon optoelectronics for hemispherical electronic eye systems , 2017, Nature Communications.

[94]  Franklin Bien,et al.  Research on flexible display at Ulsan National Institute of Science and Technology , 2017, npj Flexible Electronics.

[95]  Seungki Hong,et al.  Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices , 2017 .

[96]  Baoxing Xu,et al.  Liquid-assisted, etching-free, mechanical peeling of 2D materials , 2017 .

[97]  J. Rogers,et al.  Inorganic semiconducting materials for flexible and stretchable electronics , 2017, npj Flexible Electronics.

[98]  B. Jia,et al.  High-Performance Ultrathin Organic-Inorganic Hybrid Silicon Solar Cells via Solution-Processed Interface Modification. , 2017, ACS applied materials & interfaces.

[99]  H. Jónsson,et al.  Optimal atomic structure of amorphous silicon obtained from density functional theory calculations , 2017 .

[100]  J. Joseph,et al.  Ultra-smooth e-beam evaporated amorphous silicon thin films – A viable alternative for PECVD amorphous silicon thin films for MEMS applications , 2017 .

[101]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[102]  Chong H. Ahn,et al.  A wearable pressure and temperature sensor array using polysilicon thin film on polyimide , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[103]  Michael G. Campbell,et al.  Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices , 2017, Sensors.

[104]  Li Tian,et al.  Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol–gel Based Nanoimprinting Method , 2017 .

[105]  James L. Young,et al.  Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting , 2017, Nature Energy.

[106]  Y. Hung,et al.  Surface Engineering of Polycrystalline Silicon for Long-Term Mechanical Stress Endurance Enhancement in Flexible Low-Temperature Poly-Si Thin-Film Transistors. , 2017, ACS applied materials & interfaces.

[107]  Hao Cui,et al.  Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection. , 2017, ACS sensors.

[108]  Yonggang Huang,et al.  Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology , 2017, Nature Biomedical Engineering.

[109]  K. Lu,et al.  Semiconductor Metal–Organic Frameworks: Future Low‐Bandgap Materials , 2017, Advanced materials.

[110]  Chong H. Ahn,et al.  Polysilicon-based flexible temperature sensor for brain monitoring with high spatial resolution , 2017 .

[111]  Yi Cui,et al.  High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation. , 2016, ACS nano.

[112]  Janos Veres,et al.  Challenges and opportunities in flexible electronics , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[113]  V. Selvamanickam,et al.  High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process. , 2016, ACS applied materials & interfaces.

[114]  Amir Barati Farimani,et al.  Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems , 2016, Proceedings of the National Academy of Sciences.

[115]  Hee‐eun Song,et al.  Sub-5 μm-thick spalled single crystal Si foils by decoupling crack initiation and propagation , 2016 .

[116]  Zengming Zhang,et al.  Electron Beam Evaporation Deposition , 2016 .

[117]  Kang L. Wang,et al.  Heteroepitaxial Growth of III–V Semiconductors on 2D Materials , 2016 .

[118]  G. Patriarche,et al.  Ultrathin PECVD epitaxial Si solar cells on glass via low‐temperature transfer process , 2016 .

[119]  Jihun Oh,et al.  A Semitransparent and Flexible Single Crystal Si Thin Film: Silicon on Nothing (SON) Revisited. , 2016, ACS applied materials & interfaces.

[120]  Jed A. Hartings,et al.  Polysilicon Thin Film Developed on Flexible Polyimide for Biomedical Applications , 2016, Journal of Microelectromechanical Systems.

[121]  Claire M. Lochner,et al.  Monitoring of Vital Signs with Flexible and Wearable Medical Devices , 2016, Advanced materials.

[122]  Paul Heremans,et al.  Mechanical and Electronic Properties of Thin‐Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications , 2016, Advanced materials.

[123]  Kyung Jin Seo,et al.  Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex , 2016, Nature materials.

[124]  Taeksoo Ji,et al.  Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires , 2016, SPIE OPTO.

[125]  Sam Emaminejad,et al.  Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis , 2016, Nature.

[126]  Weigu Li,et al.  High‐Performance Flexible Nanostructured Silicon Solar Modules with Plasmonically Engineered Upconversion Medium , 2015 .

[127]  Ulrich Hilleringmann,et al.  Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors , 2015 .

[128]  Daniil Karnaushenko,et al.  Light Weight and Flexible High‐Performance Diagnostic Platform , 2015, Advanced healthcare materials.

[129]  Giovanni Pennelli,et al.  Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives , 2015 .

[130]  E. Tasciotti,et al.  Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. , 2015, Nature materials.

[131]  Jin-Young Jung,et al.  High performance H2 evolution realized in 20 μm-thin silicon nanostructured photocathodes , 2015 .

[132]  Ciro Chiappini,et al.  Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. , 2015, ACS nano.

[133]  Li Lin,et al.  LTPS TFT Process on Polyimide Substrate for Flexible AMOLED , 2015, Journal of Display Technology.

[134]  Edward F. Chang,et al.  Towards Large-Scale, Human-Based, Mesoscopic Neurotechnologies , 2015, Neuron.

[135]  K. Sun,et al.  High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. , 2015, Nano letters.

[136]  Sib Krishna Ghoshal,et al.  Hydrogen the future transportation fuel: From production to applications , 2015 .

[137]  O. Schmidt,et al.  Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. , 2015, ACS nano.

[138]  Giorgio Metta,et al.  Ultraflexible Tactile Piezoelectric Sensor Based on Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technology , 2015, IEEE Sensors Journal.

[139]  Xusheng Wang,et al.  Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell , 2015 .

[140]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[141]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[142]  John A Rogers,et al.  Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics , 2014, Advanced materials.

[143]  Hyun Jae Kim,et al.  Fabrication of high performance thin-film transistors via pressure-induced nucleation , 2014, Scientific Reports.

[144]  M. Foldyna,et al.  A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells , 2014 .

[145]  X. Chen,et al.  Characterizations of evaporated α-Si thin films for MEMS application , 2014 .

[146]  W. Lu,et al.  Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage , 2014 .

[147]  Nguyen Van Toan,et al.  Mechanical quality factor enhancement in a silicon micromechanical resonator by low-damage process using neutral beam etching technology , 2014 .

[148]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[149]  Muhammad M. Hussain,et al.  Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric , 2014 .

[150]  Zhipeng Huang,et al.  Metal-assisted chemical etching of silicon and nanotechnology applications , 2014 .

[151]  S. Yamaguchi,et al.  Electric Current Dependence of a Self-Cooling Device Consisting of Silicon Wafers Connected to a Power MOSFET , 2014, Journal of Electronic Materials.

[152]  J. Cahoon,et al.  Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires. , 2014, ACS nano.

[153]  Ulrich J Krull,et al.  Silicon nanowires as field-effect transducers for biosensor development: a review. , 2014, Analytica chimica acta.

[154]  A. Ayón,et al.  Efficiency improvement of a nanostructured polymer solar cell employing atomic layer deposited Al2O3 as a passivation layer , 2014 .

[155]  Gong-Ru Lin,et al.  Semi-transparent Si-rich SixC1−x p–i–n photovoltaic solar cell grown by hydrogen-free PECVD , 2014 .

[156]  A. Ayón,et al.  Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. , 2014, ACS applied materials & interfaces.

[157]  A. Kingon,et al.  Activated Solutions Enabling Low‐Temperature Processing of Functional Ferroelectric Oxides for Flexible Electronics , 2014, Advanced materials.

[158]  R. Turan,et al.  Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique , 2014 .

[159]  C. Fan,et al.  Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. , 2014, Accounts of chemical research.

[160]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[161]  A. Terakawa,et al.  Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo , 2013 .

[162]  Xiaodong Wang,et al.  A Processing Window for Fabricating Heavily Doped Silicon Nanowires by Metal-Assisted Chemical Etching , 2013 .

[163]  Koichi Sudoh,et al.  Shape evolution of high aspect ratio holes on Si(001) during hydrogen annealing , 2013 .

[164]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[165]  A. Ayón,et al.  High efficiency hybrid silicon nanopillar-polymer solar cells. , 2013, ACS applied materials & interfaces.

[166]  H. Cui,et al.  Flexible transparent and free-standing silicon nanowires paper. , 2013, Nano letters.

[167]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.

[168]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[169]  Stuart R. Thomas,et al.  Solution-processable metal oxide semiconductors for thin-film transistor applications. , 2013, Chemical Society reviews.

[170]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[171]  Dong Liu,et al.  Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. , 2013, ACS applied materials & interfaces.

[172]  John A. Rogers,et al.  Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers , 2013 .

[173]  J. Rogers,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[174]  R. Alcubilla,et al.  “Silicon millefeuille” : From a silicon wafer to multiple thin crystalline films in a single step , 2013 .

[175]  S. Banerjee,et al.  Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates , 2013 .

[176]  Chang Liu,et al.  A review of carbon nanotube- and graphene-based flexible thin-film transistors. , 2013, Small.

[177]  L. Qian,et al.  Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon , 2013, Nanoscale Research Letters.

[178]  Davood Shahrjerdi,et al.  Layer transfer by controlled spalling , 2013 .

[179]  Wenping Si,et al.  Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. , 2013, Angewandte Chemie.

[180]  P. Bouchard,et al.  Thermo-mechanical and fracture properties in single-crystal silicon , 2013, Journal of Materials Science.

[181]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[182]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[183]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[184]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[185]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[186]  N. Bidin,et al.  ArF Excimer Laser Annealing of Polycrystalline Silicon Thin Film , 2012 .

[187]  A. O'Neill,et al.  Top-down fabrication of single crystal silicon nanowire using optical lithography , 2012 .

[188]  Mo Li,et al.  Flexible and tunable silicon photonic circuits on plastic substrates , 2012, Scientific Reports.

[189]  Graham Fisher,et al.  Silicon Crystal Growth and Wafer Technologies , 2012, Proceedings of the IEEE.

[190]  Y. Chiou,et al.  Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating , 2012 .

[191]  Xiuling Li,et al.  Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics , 2012 .

[192]  R. E. Mapasha,et al.  Mechanical properties of graphene and boronitrene , 2012 .

[193]  Peng Wang,et al.  Thin Czochralski silicon solar cells based on diamond wire sawing technology , 2012 .

[194]  M. Treacy,et al.  The Local Structure of Amorphous Silicon , 2012, Science.

[195]  Josef Coresh,et al.  Chronic kidney disease , 2012, The Lancet.

[196]  Ilker S. Bayer,et al.  Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. , 2012, Advances in colloid and interface science.

[197]  I. Oh,et al.  Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. , 2012, Nano letters.

[198]  S. Slesazeck,et al.  Reconfigurable silicon nanowire transistors. , 2012, Nano letters.

[199]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[200]  T. Baba,et al.  Specific Heat Capacity Measurement of Single-Crystalline Silicon as New Reference Material , 2011 .

[201]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[202]  J. Poortmans,et al.  Epitaxy‐free monocrystalline silicon thin film: first steps beyond proof‐of‐concept solar cells , 2011 .

[203]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[204]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[205]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[206]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[207]  Jae‐Hyun Kim,et al.  Rate-Dependent Adhesion Between a Spherical PDMS Stamp and Silicon Substrate for a Transfer-Assembly Process , 2011 .

[208]  J. A. Ott,et al.  Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies , 2011, IEEE Journal of Photovoltaics.

[209]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[210]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[211]  D. M. Knotter,et al.  The Chemistry of Wet Etching , 2011 .

[212]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[213]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[214]  J. Yi,et al.  The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate , 2010 .

[215]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[216]  M. Mecklenburg,et al.  Spin and the honeycomb lattice: lessons from graphene. , 2010, Physical review letters.

[217]  Nick F. Ramsey,et al.  Automated electrocorticographic electrode localization on individually rendered brain surfaces , 2010, Journal of Neuroscience Methods.

[218]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[219]  N. Voelcker,et al.  Recent developments in PDMS surface modification for microfluidic devices , 2010, Electrophoresis.

[220]  Zhengguo Jin,et al.  Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method , 2009 .

[221]  R. Mertens,et al.  Large-area monocrystalline silicon thin films by annealing of macroporous arrays: Understanding and tackling defects in the material , 2009 .

[222]  R. Mertens,et al.  Innovative lift-off solar cell made of monocrystalline-silicon thin film by annealing of ordered macropores , 2009 .

[223]  J. Werner,et al.  50 μm thin solar cells with 17.0% efficiency , 2009 .

[224]  Hiroshi Iwasaki,et al.  Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si(001) , 2009 .

[225]  Chennupati Jagadish,et al.  III-V compound SC for optoelectronic devices , 2009 .

[226]  S. Bhatia,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[227]  Christophe Ballif,et al.  Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells , 2009 .

[228]  Sang Youn Han,et al.  Touch‐screen panel integrated into 12.1‐in. a‐Si:H TFT‐LCD , 2009 .

[229]  K. Dick,et al.  Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .

[230]  J. Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[231]  O. Richard,et al.  Study of pore reorganisation during annealing of macroporous silicon structures for solar cell application , 2008 .

[232]  Stergios Logothetidis,et al.  Flexible organic electronic devices: Materials, process and applications , 2008 .

[233]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[234]  S. Mohammad,et al.  Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism. , 2008, Nano letters.

[235]  Chuan-Pu Liu,et al.  Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition , 2008 .

[236]  Zumin Wang,et al.  Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers , 2008 .

[237]  G. Fortunato,et al.  Excimer Laser Annealing for Low-Temperature Polysilicon Thin Film Transistor Fabrication on Plastic Substrates , 2007, 2007 15th International Conference on Advanced Thermal Processing of Semiconductors.

[238]  Placid Mathew Ferreira,et al.  Printable Single‐Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers , 2007 .

[239]  P. Lugli,et al.  Silicon to nickel‐silicide axial nanowire heterostructures for high performance electronics , 2007 .

[240]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[241]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[242]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[243]  Mark Bohr,et al.  A 30 Year Retrospective on Dennard's MOSFET Scaling Paper , 2007, IEEE Solid-State Circuits Newsletter.

[244]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[245]  Paolo Lugli,et al.  Silicon-nanowire transistors with intruded nickel-silicide contacts. , 2006, Nano letters.

[246]  John A Rogers,et al.  Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates. , 2006, Small.

[247]  John A Rogers,et al.  Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. , 2006, Nano letters.

[248]  P. Lugli,et al.  Silicon nanowires: catalytic growth and electrical characterization , 2006, cond-mat/0609308.

[249]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[250]  S. Sivoththaman,et al.  Development of a low temperature MEMS process with a PECVD amorphous silicon structural layer , 2006 .

[251]  John A. Rogers,et al.  Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers , 2006 .

[252]  John Lewis Material challenge for flexible organic devices , 2006 .

[253]  T. Riedl,et al.  Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes , 2006 .

[254]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[255]  Weixing Zhou,et al.  Stamp collapse in soft lithography. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[256]  J. Berg,et al.  Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength , 2005, Journal of Microelectromechanical Systems.

[257]  John A. Rogers,et al.  Collapse of stamps for soft lithography due to interfacial adhesion , 2005 .

[258]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[259]  M. Bazant,et al.  Elastic constants of defected and amorphous silicon with the environment-dependent interatomic potential , 2004 .

[260]  John A. Rogers,et al.  Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates , 2004 .

[261]  A. Masuda,et al.  Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon , 2004 .

[262]  E. Fortunato,et al.  Polycrystalline silicon obtained by metal induced crystallization using different metals , 2004 .

[263]  Yu-Hwa Lo,et al.  UV/ozone modification of poly(dimethylsiloxane) microfluidic channels , 2004 .

[264]  Jan M. Łysko,et al.  Anisotropic etching of the silicon crystal-surface free energy model , 2003 .

[265]  João Pedro Conde,et al.  Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition , 2003 .

[266]  Gus Hancock,et al.  Molecular reaction dynamics , 2003 .

[267]  J. Sturm,et al.  Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide , 2002 .

[268]  Ryoichi Ishihara,et al.  Formation of location-controlled crystalline islands using substrate-embedded seeds in excimer-laser crystallization of silicon films , 2001 .

[269]  Ichiro Mizushima,et al.  Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure , 2000 .

[270]  Ichiro Mizushima,et al.  Micro-structure Transformation of Silicon: A Newly Developed Transformation Technology for Patterning Silicon Surfaces using the Surface Migration of Silicon Atoms by Hydrogen Annealing , 2000 .

[271]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[272]  R. E. Schlosser,et al.  Thin monocrystalline silicon solar cells , 1999 .

[273]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[274]  Jae-Youl Lee,et al.  Measurement of thermal expansion coefficient of poly-Si using microgauge sensors , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[275]  M. Rief,et al.  How strong is a covalent bond? , 1999, Science.

[276]  S. Asher,et al.  Contamination of silicon during ion-implantation and annealing , 1998 .

[277]  J. Westwater,et al.  Control of the Size and Position of Silicon Nanowires Grown via the Vapor-Liquid-Solid Technique , 1997 .

[278]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[279]  Volker Lehmann,et al.  The limits of macropore array fabrication , 1997 .

[280]  Albert Y. C. Yu The future of microprocessors , 1996, IEEE Micro.

[281]  I. Egry,et al.  Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation , 1995 .

[282]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .

[283]  A. Slaoui,et al.  Rapid thermal diffusion of phosphorus into silicon from doped oxide films (solar cell manufacture) , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[284]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[285]  T. Ohmi,et al.  Growth of native oxide on a silicon surface , 1990 .

[286]  J. Kǒcka,et al.  Electron drift mobility in a-Si : H under extremely high electric field , 1990 .

[287]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[288]  Hisham Z. Massoud,et al.  The effect of ion-implantation damage on dopant diffusion in silicon during shallow-junction formation , 1989 .

[289]  N. J. Chou,et al.  Adhesion of titanium thin film to oxide substrates , 1987 .

[290]  Daniel Mathiot,et al.  Dopant diffusion in silicon: A consistent view involving nonequilibrium defects , 1984 .

[291]  J. D. Rimstidt,et al.  The kinetics of silica-water reactions , 1980 .

[292]  Yuan-Sheng Tyan,et al.  Photovoltaic Materials , 1980, Science.

[293]  A. Roberts,et al.  Looking at Rubber Adhesion , 1979 .

[294]  S. Li,et al.  The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon , 1977 .

[295]  S. Yamazaki,et al.  Silicon Nitride Prepared by the SiH4-NH3 Reaction with Catalysts , 1970 .

[296]  K. B. Wolfstirn Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements , 1960 .

[297]  G. Backenstoss,et al.  Conductivity Mobilities of Electrons and Holes in Heavily Doped Silicon , 1957 .

[298]  Franz Laermer,et al.  Deep reactive ion etching , 2020, Handbook of Silicon Based MEMS Materials and Technologies.

[299]  Chunlei Yang,et al.  High-temperature-resistant and colorless polyimide: Preparations, properties, and applications , 2020 .

[300]  Chengyong Wang,et al.  Progress in metal-assisted chemical etching of silicon nanostructures , 2020 .

[301]  Loutfy H. Madkour Synthesis Methods For 2D Nanostructured Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs) , 2019, Advanced Structured Materials.

[302]  John A Rogers,et al.  Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs , 2017, Advanced functional materials.

[303]  Dehui Xu,et al.  The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication , 2017 .

[304]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[305]  N. Chauhan,et al.  A Review: Conducting Polymers and Their Applications. , 2014 .

[306]  Tassaneewan Laksanasopin,et al.  Low-Cost Microdevices for Point-of-Care Testing , 2013 .

[307]  Chongwu Zhou,et al.  Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis , 2013 .

[308]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[309]  Liang Ni,et al.  VLS silicon nanowires based resistors for chemical sensor applications , 2012 .

[310]  Sunho Jeong,et al.  Low-temperature, solution-processed metal oxide thin film transistors , 2012 .

[311]  Tingkai Li,et al.  III-V compound semiconductors : integration with silicon-based microelectronics , 2011 .

[312]  Paulo Carvalho,et al.  High barrier plastics using nanoscale inorganic films , 2011 .

[313]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[314]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[315]  D. Depla,et al.  Sputter Deposition Processes , 2010 .

[316]  K. Sarma Amorphous Silicon: Flexible Backplane and Display Application , 2009 .

[317]  P. Lugli,et al.  Analysis of the hysteretic behavior of silicon nanowire transistors , 2008 .

[318]  O. Paul,et al.  Mechanical Properties and Reliability of Amorphous vs. Polycrystalline Silicon Thin Films , 2008 .

[319]  T. Tsuchiya Silicon and Related Materials , 2008 .

[320]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[321]  John A. Rogers,et al.  Photolithographic Route to the Fabrication of Micro/Nanowires of III–V Semiconductors , 2005 .

[322]  J. Binder,et al.  The mechanical properties of thin polycrystalline silicon films as function of deposition and doping conditions , 1999 .

[323]  V. Yunkin,et al.  Highly anisotropic selective reactive ion etching of deep trenches in silicon , 1994 .

[324]  Chuang‐Chuang Tsai,et al.  Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma , 1991 .

[325]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[326]  Zhigang Suo,et al.  Steady-state cracking in brittle substrates beneath adherent films , 1989 .

[327]  S. Stiffler,et al.  Silicon-on-insulator (SOI) by bonding and ETCH-back , 1985, 1985 International Electron Devices Meeting.

[328]  D. W. Hoffman,et al.  Internal stresses in titanium, nickel, molybdenum, and tantalum films deposited by cylindrical magnetron sputtering , 1977 .

[329]  Philip D. Rack Chemical Vapor Deposition , 1971 .