A distance geometry study of ring systems

Abstract We present the application of distance geometry methods to the generation of structures of a sampling of organic molecules: cyclooctane, cyclododecane, 18-crown-6, and androstane-3,17-dione. The method provides a simple, convenient method to generate either a random sample of molecular conformations, or to generate specified conformations. Using this approach, we found a new, relatively low-energy conformation of 18-crown-6. We also demonstrated that the lowest energy structure of cyclododecane was not exactly of D 4 symmetry, which had been previously assumed in molecular mechanics optimization.

[1]  C. Djerassi,et al.  An Electron Diffraction Investigation of Cyclooctane and Cyclotetradeca-1,8-diyne. , 1966 .

[2]  Peter A. Kollman,et al.  A molecular-mechanics study of 18-crown-6 and its alkali complexes: an analysis of structural flexibility, ligand specificity, and the macrocyclic effect , 1982 .

[3]  James B. Hendrickson,et al.  Molecular geometry. VII. Modes of interconversion in the medium rings , 1967 .

[4]  J. Dunitz,et al.  Potassium thiocyanate complex of 1,4,7,10,13,16-hexaoxacyclooctadecane , 1974 .

[5]  R. P. Phizackerley,et al.  Crystal structure analyses of 1,4,7,10,13,16-hexaoxacyclooctadecane and its complexes with alkali thiocyanates , 1974 .

[6]  J. Dunitz,et al.  Hydrated sodium thiocyanate complex of 1,4,7,10,13,16‐hexaoxacyclooctadecane , 1974 .

[7]  J. D. Dunitz,et al.  Die Strukturen der mittleren Ringverbindungen III. Die Struktur des Cyclododecans , 1960 .

[8]  E. Slowinski,et al.  THE VIBRATIONAL SPECTRA AND STRUCTURE OF CYCLOOCTANE , 1959 .

[9]  Irwin D. Kuntz,et al.  Effects of distance constraints on macromolecular conformation. II. Simulation of experimental results and theoretical predictions , 1979 .

[10]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[11]  A. Kobayashi,et al.  The Crystal Structure of the Ammonium Bromide Complex of 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-Crown-6), C12H24O6·NH4Br·2H2O , 1978 .

[12]  J. B. Hendrickson,et al.  Molecular geometry. VI. Methyl-substituted cycloalkanes , 1967 .

[13]  C. Tanford,et al.  Acid-base titrations in concentrated guanidine hydrochloride. Dissociation constants of the guamidinium ion and of some amino acids. , 1967, Journal of the American Chemical Society.

[14]  Kenneth B. Wiberg,et al.  A Scheme for Strain Energy Minimization. Application to the Cycloalkanes1 , 1965 .

[15]  J. Koskikallio,et al.  On the Crystal Structure of a Complex between Potassium p-Toluenesulfonate and 1,4,7,10,13,16-Hexaoxa-cyclooctadecane. , 1971 .

[16]  D. Sands,et al.  On the structure of cyclo-octane at 0°C , 1965 .

[17]  G M Crippen,et al.  Distance geometry approach to rationalizing binding data. , 1979, Journal of medicinal chemistry.

[18]  I. Kuntz,et al.  A computer model for the 30S ribosome subunit. , 1980, Biophysical journal.

[19]  Norman L. Allinger,et al.  Conformational analysis. LX. Improved calculations of the structures and energies of hydrocarbons by the Westheimer method , 1968 .

[20]  S. Lifson,et al.  Potential functions and conformations in cycloalkanes , 1967 .

[21]  N. Cohen,et al.  Script: interactive molecular geometrical treatments on the basis of computer-drawn chemical formula , 1981 .

[22]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[23]  F. Anet,et al.  Nuclear Magnetic Resonance Spectra and Conformations of Deuterated Cyclooctanes1 , 1966 .

[24]  A. Lucano,et al.  Determination of the molecular packing in the crystal of 5α-androstan-3,17-dione by means of potential-energy calculations , 1973 .

[25]  N. L. Allinger,et al.  Androsterone. The structure by force-field calculations , 1975, Steroids.

[26]  F. Anet,et al.  Cyclododecane. Force-field calculations and proton NMR spectra of deuterated isotopomers , 1978 .

[27]  J. Dunitz,et al.  1,4,7,10,13,16‐Hexaoxacyclooctadecane , 1974 .

[28]  H A Scheraga,et al.  Use of a symmetry condition to compute the conformation of gramicidin S1. , 1975, Macromolecules.