Relaxor ferroelectric PMN-32%PT crystals under stress and electric field loading: I-32 mode measurements

Relaxor PMN-0.32PT single crystals were subjected to combined stress, electric field, and thermal loading. The electric field induced polarization and strain for a series of bias stresses and the stress induced polarization and strain for a series of bias electric fields were measured. These data were used to generate three-dimensional plots of the material behavior that clearly show a phase transformation. The results demonstrate that combinations of stress and electric field drive the phase transformation and that the driving force for this transformation decreases with increasing temperature. The threshold for the phase transformation at each temperature is used to generate a stability map for the material. Material properties are calculated for the linear regions.

[1]  T. Shrout,et al.  Phase stabilities of “morphotropic” phases in Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals , 2002 .

[2]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[3]  Thomas R. Shrout,et al.  Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3– 0.045PbTiO3 single crystals , 1999 .

[4]  Z. Ye,et al.  Domain structures and phase transitions of the relaxor-based piezo-/ ferroelectric (1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3single crystals , 1999 .

[5]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[6]  K. Uchino,et al.  In situ observation of domains in 0.9Pb(Zn1/3 Nb2/3)O3 − 0.1PbTiO3 single crystals , 1999 .

[7]  Yiping Guo,et al.  Dielectric and piezoelectric performance of PMN–PT single crystals with compositions around the MPB: influence of composition, poling field and crystal orientation , 2002 .

[8]  Y. Uesu,et al.  Optical Observation of Heterophase and Domain Structures in Relaxor Ferroelectrics Pb(Zn1/3Nb2/3)O3/9%PbTiO3 , 1998 .

[9]  Z. Ye Crystal chemistry and domain structure of relaxor piezocrystals , 2002 .

[10]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[11]  B. K. Mukherjee,et al.  Piezoelectric properties and phase transitions of 〈001〉-oriented Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals , 2002 .

[12]  Kenji Uchino,et al.  Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals , 1982 .

[13]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[14]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[15]  V. Schmidt,et al.  Pressure-induced crossover from long‑to‑short‑range order in [Pb(Zn1/3Nb2/3)O3]0.905 (PbTiO3)0.095 single crystal, , 2000 .

[16]  Qiming Zhang,et al.  Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2001 .

[17]  X. Tan,et al.  Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3–PbTiO3 crystal , 2001 .

[18]  Youichi Enomoto,et al.  A Model Analysis for Current-Voltage Characteristics of Superconducting Weak Links , 1997 .

[19]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  D. Viehland,et al.  Electroacoustic properties of 〈110〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals under uniaxial stress , 2003 .

[21]  Haosu Luo,et al.  Crystal orientation dependence of dielectric and piezoelectric properties of tetragonal Pb(Mg1/3Nb2/3)O3–38%PbTiO3 single crystal , 2002 .

[22]  D. Viehland,et al.  Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals and ceramics , 2001 .

[23]  Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3 , 2000, cond-mat/0006152.

[24]  Christopher S. Lynch,et al.  Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling , 2003 .

[25]  Y. Uesu,et al.  Structural and optical studies of development of the long-range order in ferroelectric relaxor Pb(Zn1/3Nb2/3)O3/9%PbTiO3 , 1998 .

[26]  R. Uecker,et al.  Growth and correlation between composition and structure of (1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3 crystals near the morphotropic phase boundary , 2003 .

[27]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[28]  Chih‐Long Tsai,et al.  Orientation dependence and electric-field effect in the relaxor-based ferroelectric crystal (PbMg1/3Nb2/3O3)0.68(PbTiO3)0.32 , 2002 .

[29]  R. Waser Electroceramics IV : proceedings of the 4th International Conference on Electroceramics & Applications, held on September 5-7, 1994, at the Eurogress Conference Center Aachen, Germany , 1994 .

[30]  S. Saitoh,et al.  Dielectric and Piezoelectric Properties of Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 Single Crystal Grown by Solution Bridgman Method , 1998 .

[31]  Kenji Uchino,et al.  High electromechanical coupling piezoelectrics: relaxor and normal ferroelectric solid solutions , 1998 .

[32]  D. Viehland,et al.  Electromechanical coupling coefficient of 〈001〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 cystals: Stress and temperature independence , 2001 .

[33]  Dwight D. Viehland,et al.  Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals , 2000 .

[34]  D. Viehland,et al.  Piezoelectric instability in 〈011〉-oriented Pb(B1/3IB2/3II)O3–PbTiO3 crystals , 2001 .

[35]  Wesley S. Hackenberger,et al.  High performance single crystal piezoelectrics: applications and issues , 2002 .

[36]  D. Viehland,et al.  Anhysteretic field-induced rhombhohedral to orthorhombic transformation in 〈110〉-oriented 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals , 2002 .

[37]  V. Schmidt,et al.  E-field-induced polarization rotation in Pb(Mg1/3Nb2/3)1−xTixO3 crystal , 2003 .