Descriptional Complexity of Pushdown Store Languages

It is well known that the pushdown store languageP(M) of a pushdown automaton (PDA) M -- i.e., the language consisting of words occurring on the pushdown along accepting computations of M -- is a regular language. Here, we design succinct nondeterministic finite automata (NFA) accepting P(M). In detail, an upper bound on the size of an NFA for P(M) is obtained, which is quadratic in the number of states and linear in the number of pushdown symbols of M. Moreover, this upper bound is shown to be asymptotically optimal. Then, several restricted variants of PDA are considered, leading to improved constructions. In all cases, we prove the asymptotical optimality of the size of the resulting NFA. Finally, we apply our results to decidability questions related to PDA, and obtain solutions in deterministic polynomial time.

[1]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[2]  Martin Kutrib,et al.  Massively parallel fault tolerant computations on syntactical patterns , 2002, Future Gener. Comput. Syst..

[3]  Martin Kutrib,et al.  Improving Raster Image Run-Length Encoding Using Data Order , 2001, CIAA.

[4]  Martin Kutrib,et al.  Fast one-way cellular automata , 2003, Theor. Comput. Sci..

[5]  Martin Kutrib,et al.  Economy of Descriptions for Basic Constructions on Rational Transductions , 2002, DCFS.

[6]  Martin Kutrib,et al.  A Time Hierarchy for Bounded One-Way Cellular Automata , 2001, MFCS.

[7]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..

[8]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[11]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[12]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[13]  Carlo Mereghetti,et al.  More concise representation of regular languages by automata and regular expressions , 2010, Inf. Comput..

[14]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[15]  Markus Holzer,et al.  Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes , 2012, FUN.

[16]  Martin Kutrib,et al.  Context-dependent nondeterminism for pushdown automata , 2007, Theor. Comput. Sci..

[17]  Martin Kutrib,et al.  Cellular automata with sparse communication , 2010, Theor. Comput. Sci..

[18]  Martin Kutrib,et al.  Descriptional Complexity - An Introductory Survey , 2010, Scientific Applications of Language Methods.

[19]  Martin Kutrib,et al.  State complexity of basic operations on nondeterministic finite automata , 2002, CIAA'02.

[20]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[21]  Markus Holzer,et al.  On the Complexity of Rolling Block and Alice Mazes , 2012, FUN.

[22]  Martin Kutrib,et al.  Flip-Pushdown Automata: k+1 Pushdown Reversals Are Better than k , 2003, ICALP.

[23]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[24]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[25]  Martin Kutrib,et al.  Deterministic Turing machines in the range between real-time and linear-time , 2002, Theor. Comput. Sci..

[26]  Barbara König,et al.  On deterministic finite automata and syntactic monoid size , 2004, Theor. Comput. Sci..

[27]  Carlo Mereghetti,et al.  Quantum finite automata with control language , 2006, RAIRO Theor. Informatics Appl..

[28]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, Symposium on the Theory of Computing.

[29]  Martin Kutrib,et al.  Regulated nondeterminism in pushdown automata , 2009, Theor. Comput. Sci..

[30]  Sheila A. Greibach,et al.  An Infinite Hierarchy of Context-Free Languages , 1969, JACM.

[31]  Martin Kutrib,et al.  NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY , 2009 .

[32]  Martin Kutrib,et al.  Flip-Pushdown Automata: Nondeterminism Is Better than Determinism , 2003, Developments in Language Theory.

[33]  Florin Manea,et al.  On Contextual Grammars with Subregular Selection Languages , 2011, DCFS.

[34]  Andreas Malcher,et al.  Descriptional complexity of two-way pushdown automata with restricted head reversals , 2011, Theor. Comput. Sci..

[35]  Markus Holzer,et al.  Tight Bounds on the Descriptional Complexity of Regular Expressions , 2009, Developments in Language Theory.

[36]  Carlo Mereghetti,et al.  Removing nondeterminism in constant height pushdown automata , 2012, Inf. Comput..

[37]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[38]  Carlo Mereghetti,et al.  The size-cost of Boolean operations on constant height deterministic pushdown automata , 2012, Theor. Comput. Sci..

[39]  Andreas Maletti,et al.  An nlogn Algorithm for Hyper-minimizing States in a (Minimized) Deterministic Automaton , 2009, CIAA.

[40]  Seymour Ginsburg,et al.  Stack automata and compiling , 1967, JACM.

[41]  Martin Kutrib,et al.  Massively Parallel Pattern Recognition with Link Failures , 2000, SOFSEM.

[42]  Martin Kutrib,et al.  Unary Language Operations and Their Nondeterministic State Complexity , 2002, Developments in Language Theory.

[43]  Sheila A. Greibach,et al.  A note on pushdown store automata and regular systems , 1967 .

[44]  Gheorghe Paun,et al.  Grammars with Controlled Derivations , 1997, Handbook of Formal Languages.

[45]  Martin Kutrib,et al.  Self-Assembling Finite Automata , 2002, COCOON.

[46]  Martin Kutrib Refining Nondeterminism below Linear-Time , 2001, DCFS.

[47]  Hermann Gruber,et al.  Simplifying Regular Expressions , 2010, LATA.

[48]  Martin Kutrib,et al.  String Transformation for n -Dimensional Image Compression , 2002, SOFSEM.