Extended halo of NGC 2682 (M 67) from Gaia DR2

Context. NGC 2682 is a nearby open cluster that is approximately 3.5 Gyr old. Dynamically, most open clusters are expected to dissolve on shorter timescales of ≈1 Gyr. That it has survived until now means that NGC 2682 was likely much more massive in the past and is bound to have an interesting dynamical history. Aims. We investigate the spatial distribution of the stars in NGC 2682 to constrain dynamical evolution of the cluster. We particularly focus on the marginally bound stars in the cluster outskirts. Methods. We used Gaia DR2 data to identify NGC 2682 members up to a distance of ∼150 pc (10°). The two methods Clusterix and UPMASK were applied to this end. We estimated distances to obtain 3D stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculated the orbit of NGC 2682 using the GRAVPOT16 software. Results. The cluster extends up to 200′ (50 pc), which implies that its size is at least twice as large as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusion. The extra-tidal stars in NGC 2682 may originate from external perturbations such as disc-shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disc ≈40 Myr ago.

[1]  Jay Anderson,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. II. DYNAMICAL MODELS , 2009, 0905.0638.

[2]  B. Goldman,et al.  Hyades tidal tails revealed by Gaia DR2 , 2018, Astronomy & Astrophysics.

[3]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[4]  L. M. Sarro,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[5]  L. Spitzer Distribution of Galactic Clusters. , 1958 .

[6]  J. Ostriker,et al.  On the Evolution of Globular Clusters , 1972 .

[7]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[8]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[9]  A. Krone-Martins,et al.  Open cluster kinematics with Gaia DR2 , 2018, Astronomy & Astrophysics.

[10]  S. McGaugh THE SURFACE DENSITY PROFILE OF THE GALACTIC DISK FROM THE TERMINAL VELOCITY CURVE , 2015, 1511.06387.

[11]  A. Krone-Martins,et al.  UPMASK: unsupervised photometric membership assignment in stellar clusters , 2013, 1309.4471.

[12]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[13]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[14]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[15]  E. Bica,et al.  Mass segregation in M 67 with 2MASS , 2003 .

[16]  D. Bossini,et al.  Age determination for 269 Gaia DR2 open clusters , 2019, Astronomy & Astrophysics.

[17]  A. D. Koter,et al.  Mass loss from stars and the evolution of stellar clusters : proceedings of a workshop held at Lunteren, The Netherlands 29 May - 1 June 2006 , 2008 .

[18]  Heinrich Eichhorn,et al.  On the estimation of distances from trigonometric parallaxes , 1996 .

[19]  S. Aarseth,et al.  A complete N-body model of the old open cluster M67 , 2005, astro-ph/0507239.

[20]  J. Davenport,et al.  DEATH OF A CLUSTER: THE DESTRUCTION OF M67 AS SEEN BY THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.1198.

[21]  S. Roser,et al.  Praesepe (NGC 2632) and its tidal tails , 2019, Astronomy & Astrophysics.

[22]  Agustín Sánchez-Lavega,et al.  Highlights on Spanish Astrophysics IX , 2017 .

[23]  M. Colpi,et al.  The Contribution of Primordial Binaries to the Blue Straggler Population in 47 Tucanae , 2004, astro-ph/0402513.

[24]  S. Warren,et al.  The Blue Straggler Population of the Globular Cluster M5: Comparison with M3 , 2006, astro-ph/0605047.

[25]  G. Carraro,et al.  Ruprecht 147: A Paradigm of Dissolving Star Cluster , 2019, The Astronomical Journal.

[26]  Junichiro Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2003 .

[27]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[28]  N. Bastian,et al.  An analytical description of the disruption of star clusters in tidal fields with an application to Galactic open clusters , 2005, astro-ph/0505558.

[29]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[30]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[31]  A. Robin,et al.  Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.

[32]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[33]  M. Asplund,et al.  The chemical compositions of solar twins in the open cluster M67 , 2016, 1608.03788.

[34]  D. Heggie,et al.  Tidal tails of star clusters , 2009, 0909.2619.

[35]  Xiaohui Fan,et al.  Deep wide-field spectrophotometry of the open cluster M67 , 1996, astro-ph/9604178.

[36]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[37]  D. Galad'i-Enr'iquez,et al.  uvby - H β CCD photometry and membership segregation of the open cluster NGC 2682 (M 67) , 2007, 0704.2887.

[38]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[39]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[40]  Xinhua Gao,et al.  A Machine-learning-based Investigation of the Open Cluster M67 , 2018, The Astrophysical Journal.

[41]  L. Pasquini,et al.  THE SUN WAS NOT BORN IN M67 , 2012, 1201.0987.

[42]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[43]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[44]  S. M. Fall,et al.  The Structure of Young Star Clusters in the Large Magellanic Cloud , 1987 .

[45]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[46]  M. Mapelli,et al.  The Blue Straggler Population of the Globular Cluster M5 , 2007, 0704.0139.

[47]  A. Krone-Martins,et al.  Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution , 2018, Astronomy & Astrophysics.

[48]  C. Barache,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[49]  W. Mccrea Extended Main-Sequence of Some Stellar Clusters , 1964 .

[50]  P. McMillan,et al.  The mass distribution and gravitational potential of the Milky Way , 2016, 1608.00971.

[51]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2018, Astronomy & Astrophysics.

[52]  L. Spitzer Dynamical evolution of globular clusters , 1987 .