Spitzer/MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS

We report the results of an analysis of all Spitzer/MIPS 24 μm observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% ± 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% ± 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 ± 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 ± 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos ω to be 0.00004 ± 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s^(–1) (3σ) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual ~0.2% decrease in flux over ~30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 μm array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough understanding of detector-related instrumental effects on long timescales when making the high-precision mid-infrared measurements planned for future missions such as EChO, SPICA, and the James Webb Space Telescope.

[1]  H. Thrastarson,et al.  EFFECTS OF INITIAL FLOW ON CLOSE-IN PLANET ATMOSPHERIC CIRCULATION , 2010, 1004.2871.

[2]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[3]  K. Menou,et al.  THE ROLE OF DRAG IN THE ENERGETICS OF STRONGLY FORCED EXOPLANET ATMOSPHERES , 2011, 1105.2321.

[4]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[5]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[6]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[7]  Drake Deming,et al.  A SPITZER TRANSMISSION SPECTRUM FOR THE EXOPLANET GJ 436b, EVIDENCE FOR STELLAR VARIABILITY, AND CONSTRAINTS ON DAYSIDE FLUX VARIATIONS , 2011, 1104.2901.

[8]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[9]  H. Aumann,et al.  Infrared Astronomical Satellite , 1977 .

[10]  Thomas P. Greene,et al.  TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE , 2010, 1010.2451.

[11]  Zucker,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458. , 2000, The Astrophysical journal.

[12]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[13]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[14]  S. Seager,et al.  ON THE METHOD TO INFER AN ATMOSPHERE ON A TIDALLY LOCKED SUPER EARTH EXOPLANET AND UPPER LIMITS TO GJ 876d , 2009, 0910.1505.

[15]  D. Lin,et al.  RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY , 2010, 1001.0982.

[16]  Sara Seager,et al.  The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.

[17]  Nicolas B. Cowan,et al.  A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS , 2010, 1011.0428.

[18]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .

[19]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[20]  C. Beichman,et al.  Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement , 1988 .

[21]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[22]  D. Ciardi,et al.  Spitzer 24 μm Time Series Observations of the Eclipsing M Dwarf Binary GU Boötis , 2008 .

[23]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[24]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[25]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[26]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[27]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[28]  D. Ehrenreich,et al.  Determining Atmospheric Conditions at the Terminator of the Hot Jupiter HD 209458b , 2008, 0803.1054.

[29]  S. Ridgway,et al.  CHARA Array Measurements of the Angular Diameters of Exoplanet Host Stars , 2008, 0803.1411.

[30]  S. Seager,et al.  On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters , 2007, 0712.2242.

[31]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[32]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[33]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[34]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[35]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[36]  Drake Deming,et al.  Infrared Observations during the Secondary Eclipse of HD 209458b. II. Strong Limits on the Infrared Spectrum Near 2.2 μm , 2003, astro-ph/0307297.

[37]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[38]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[39]  K. Menou,et al.  THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS , 2009, 0907.2692.

[40]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[41]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[42]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[43]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[44]  Nikku Madhusudhan,et al.  CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS , 2011, 1109.3183.

[45]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[46]  K. Cunha,et al.  ABUNDANCES OF STARS WITH PLANETS: TRENDS WITH CONDENSATION TEMPERATURE, , 2011, 1103.0757.

[47]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[48]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[49]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[50]  A Spitzer* Infrared Radius for the Transiting Extrasolar Planet HD 209458b , 2006, astro-ph/0606096.

[51]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[52]  Adam Burrows,et al.  PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS , 2010, 1005.0346.

[53]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[54]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[55]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.