NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
暂无分享,去创建一个
Annelot M. Dekker | Robert H. Brown | F. Baas | T. Meitinger | T. Strom | J. De Belleroche | A. Al-Chalabi | C. Shaw | C. Troakes | S. Al-Sarraj | P. Andersen | A. Chiò | F. Diekstra | J. Glass | O. Hardiman | J. Landers | R. McLaughlin | Jack W Miller | G. Mora | W. Robberecht | A. Shatunov | Bradley N Smith | S. Topp | C. Vance | L. H. van den Berg | M. V. van Es | J. Veldink | M. Turner | P. Leigh | D. Calini | A. Calvo | C. Gellera | A. Ludolph | G. Rouleau | K. V. van Eijk | K. Morrison | K. Talbot | G. Lauria | P. Keagle | M. Sendtner | Jochen H Weishaupt | P. Shaw | W. van Rheenen | C. Fallini | A. King | N. Ticozzi | K. Kenna | P. Sapp | A. T. Ten Asbroek | J. Esteban-Pérez | C. Tiloca | F. Verde | H. Pall | A. Ratti | V. Silani | R. Rademakers | P. Dion | F. Taroni | K. Williams | I. Blair | G. Nicholson | S. Asress | P. Van Damme | Ashley R Jones | C. Leblond | D. McKenna-Yasek | Perry T C van Doormaal | W. Sproviero | J. Mora | M. Polak | C. Drepper | A. J. van der Kooi | M. de Visser | K. Boylan | M. van Blitterswijk | Bradley N. Smith | C. Colombrita | A. García-Redondo | Brendan Kenna | A. Kenna | J. Muñoz-Blanco | Nazli A Başak | J. de Belleroche | A. T. ten Asbroek | J. Esteban‐Pérez | R. Rademakers | N. Başak | A. Jones | Jack W. Miller
[1] M. Schemper,et al. A solution to the problem of separation in logistic regression , 2002, Statistics in medicine.
[2] M. Pericak-Vance,et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). , 2002, American journal of human genetics.
[3] J. Kobarg,et al. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. , 2003, Biochemistry.
[4] Shin J. Oh,et al. Mutant dynactin in motor neuron disease , 2003, Nature Genetics.
[5] S. Batzoglou,et al. Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.
[6] L. Quarmby,et al. The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis , 2008, BMC Cell Biology.
[7] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[8] Y. Altschuler,et al. The mammalian Nek1 kinase is involved in primary cilium formation , 2008, FEBS letters.
[9] Peter Nürnberg,et al. HomozygosityMapper—an interactive approach to homozygosity mapping , 2009, Nucleic Acids Res..
[10] W. Craigen,et al. Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1 , 2009, Cell cycle.
[11] Xiaohui Xie,et al. Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..
[12] J. Milbrandt,et al. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons , 2009, Journal of Cell Science.
[13] Justin C. Fay,et al. Identification of deleterious mutations within three human genomes. , 2009, Genome research.
[14] S. Henikoff,et al. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.
[15] J. Gleeson,et al. The role of primary cilia in neuronal function , 2010, Neurobiology of Disease.
[16] Jana Marie Schwarz,et al. MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.
[17] Serafim Batzoglou,et al. Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..
[18] Josyf Mychaleckyj,et al. Robust relationship inference in genome-wide association studies , 2010, Bioinform..
[19] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[20] Emily H Turner,et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome , 2010, Nature Genetics.
[21] D. Moura,et al. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest. , 2010, Mutagenesis.
[22] M. DePristo,et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.
[23] Christian Gilissen,et al. Unlocking Mendelian disease using exome sequencing , 2011, Genome Biology.
[24] C. Sander,et al. Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.
[25] A. Ekici,et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. , 2011, American journal of human genetics.
[26] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[27] J. Turnbull,et al. Adenylyl Cyclase type 3, a marker of primary cilia, is reduced in primary cell culture and in lumbar spinal cord in situ in G93A SOD1 mice , 2011, BMC Neuroscience.
[28] J. Miller,et al. Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.
[29] P. Rossini,et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease , 2012, Neurology.
[30] Kenny Q. Ye,et al. An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.
[31] Pablo Cingolani,et al. © 2012 Landes Bioscience. Do not distribute. , 2022 .
[32] A. Chiò,et al. Extensive genetics of ALS , 2012, Neurology.
[33] Tom R. Gaunt,et al. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models , 2012, Human mutation.
[34] Lance Lee. Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia , 2013, Journal of neuroscience research.
[35] Semyon Kruglyak,et al. Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms , 2013, Bioinform..
[36] D. Morris,et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing , 2013, Journal of Medical Genetics.
[37] I. Adzhubei,et al. Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.
[38] Y. Shav-Tal,et al. Nek7 kinase accelerates microtubule dynamic instability. , 2013, Biochimica et biophysica acta.
[39] Masato Kimura,et al. NCBI’s Database of Genotypes and Phenotypes: dbGaP , 2013, Nucleic Acids Res..
[40] L. Tsai,et al. DNA Damage and Its Links to Neurodegeneration , 2014, Neuron.
[41] D. A. Bosco,et al. Functions of FUS/TLS From DNA Repair to Stress Response: Implications for ALS , 2014, ASN neuro.
[42] M. Schatz,et al. Reducing INDEL calling errors in whole genome and exome sequencing data , 2014, Genome Medicine.
[43] J. Shendure,et al. A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.
[44] Adriano Chiò,et al. State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.
[45] Eric Boerwinkle,et al. In silico prediction of splice-altering single nucleotide variants in the human genome , 2014, Nucleic acids research.
[46] G. Comi,et al. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis , 2015, Front. Cell. Neurosci..
[47] F. Coppedè,et al. DNA damage in neurodegenerative diseases. , 2015, Mutation research.
[48] Brittany N. Lasseigne,et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.
[49] Jane S. Paulsen,et al. Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease , 2015, Cell.
[50] T. Wieland,et al. NEK1 mutations in familial amyotrophic lateral sclerosis. , 2016, Brain : a journal of neurology.
[51] E. Boerwinkle,et al. dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.