Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs

Abstract Two classes of efficient and robust schemes are proposed for the general multi-symplectic Hamiltonian systems using the invariant energy quadratization (IEQ) approach. The schemes are linear, second-order accurate, local energy-preserving, and preserve the global energy. They are not restricted to specific forms of the nonlinear part of the state function, and only require solving linear equations at each time step. We applied the new schemes to various multi-symplectic Hamiltonian PDEs to demonstrate their effectiveness, computational efficiency and accuracy.

[1]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[2]  Bin Wang,et al.  Local structure-preserving algorithms for partial differential equations , 2008 .

[3]  Brynjulf Owren,et al.  A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..

[4]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .

[5]  Haihui Zhang,et al.  Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrödinger equations , 2018, J. Comput. Phys..

[6]  Jan M. Nordbotten,et al.  A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities , 2018 .

[7]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[8]  Jingjing Zhang,et al.  Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..

[9]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[10]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[11]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[12]  Brynjulf Owren,et al.  Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..

[13]  Jiaxiang Cai A new explicit multisymplectic scheme for the regularized long-wave equation , 2009 .

[14]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[15]  Yushun Wang,et al.  Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs , 2014, J. Comput. Phys..

[16]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[17]  Yushun Wang,et al.  Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system , 2013, J. Comput. Phys..

[18]  U. Ascher,et al.  On symplectic and multisymplectic schemes for the KdV equation , 2005 .

[19]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[20]  L. Kong,et al.  Efficient energy‐preserving scheme of the three‐coupled nonlinear Schrödinger equation , 2019, Mathematical Methods in the Applied Sciences.

[21]  Zhenguo Mu,et al.  Efficient local energy dissipation preserving algorithms for the Cahn-Hilliard equation , 2018, J. Comput. Phys..

[22]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[23]  Yushun Wang,et al.  Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs , 2019, Comput. Phys. Commun..

[24]  Jialin Hong,et al.  Local energy‐ and momentum‐preserving schemes for Klein‐Gordon‐Schrödinger equations and convergence analysis , 2017 .

[25]  Jianlin Xia,et al.  Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations , 2012, J. Comput. Phys..

[26]  Chaolong Jiang,et al.  A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach , 2018, Journal of Scientific Computing.

[27]  Songhe Song,et al.  Symplectic wavelet collocation method for Hamiltonian wave equations , 2010, J. Comput. Phys..

[28]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[29]  Yajuan Sun,et al.  Symplectic and multisymplectic numerical methods for Maxwell's equations , 2011, J. Comput. Phys..

[30]  Yongzhong Song,et al.  Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions , 2018, J. Comput. Phys..

[31]  Carlos Ruberto Fragoso Júnior,et al.  A conservative finite volume scheme with time-accurate local time stepping for scalar transport on unstructured grids , 2015 .

[32]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[33]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[34]  Shanshan Jiang,et al.  Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations , 2009, J. Comput. Phys..

[35]  Abdul-Qayyum M. Khaliq,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme , 2005, Math. Comput. Simul..

[36]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[38]  Alvaro L. Islas,et al.  Multi-symplectic methods for generalized Schrödinger equations , 2003, Future Gener. Comput. Syst..

[39]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[40]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .