Maribo—A new CM fall from Denmark

Abstract– Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse-grained components in Maribo include chondrules, fine-grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al-rich inclusions. The components are typically rimmed by fine-grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone-like texture, tochilinite–cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = −1.27‰; δ18O = 4.96‰; Δ17O = −3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen-rich components unique to Maribo.

[1]  J. Evans,et al.  Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978 , 1982 .

[2]  J. Trigo‐Rodríguez,et al.  Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .

[3]  M. Zolensky,et al.  Sayama CM2 Chondrite: Fresh but Heavily Altered , 2001 .

[4]  C. Pillinger,et al.  High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications , 1999 .

[5]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[6]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[7]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[8]  H. Palme,et al.  The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus , 2001 .

[9]  O. Eugster Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages , 1988 .

[10]  E. M. Perdue,et al.  High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems , 2007, Analytical and bioanalytical chemistry.

[11]  I. Franchi,et al.  Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes , 2004 .

[12]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[13]  U. Ott Noble Gases in Meteorites – Trapped Components , 2002 .

[14]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[15]  Gary R. Huss,et al.  Noble gases in presolar diamonds II: Component abundances reflect thermal processing , 1994 .

[16]  H. Haack,et al.  The Meteoritical Bulletin, No. 96, September 2009 , 2009 .

[17]  E. Anders,et al.  Interstellar grains in meteorites: II. SiC and its noble gases , 1994 .

[18]  J. Armstrong Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments , 1991 .

[19]  H. Haack,et al.  The Meteoritical Bulletin, No. 97 , 2010 .

[20]  U. Herpers,et al.  Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids , 1991 .

[21]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[22]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[23]  J. Geiss,et al.  NEUTRONS IN METEORITES , 1961 .

[24]  E. Jarosewich,et al.  CHEMICAL ANALYSIS OF THE MURCHISON METEORITE , 1971 .

[25]  R. Reedy,et al.  Cosmogenic neutron-capture-produced nuclides in stony meteorites , 1986 .

[26]  R. Wieler Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .

[27]  I. Franchi,et al.  Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and Cos , 2010 .

[28]  F. Begemann,et al.  Trapped noble gases in unequilibrated ordinary chondrites , 1990 .

[29]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[30]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[31]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[32]  D. Sears,et al.  The compositional classification of chondrites: II The enstatite chondrite groups , 1982 .

[33]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .

[34]  J. H. Reynolds,et al.  Rare-gas-rich separates from carbonaceous chondrites , 1976 .

[35]  R. Pepin,et al.  Trapped neon in meteorites — II , 1969 .

[36]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[37]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[38]  L. Schultz,et al.  Noble gases in H-chondrites and potential differences between Antarctic and non-Antarctic meteorites , 1991 .

[39]  A. Rubin,et al.  Siderophile-element Anomalies in CK Carbonaceous Chondrites: Implications for Parent-body Aqueous Alteration and Terrestrial Weathering of Sulfides , 2006 .

[40]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[41]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[42]  K. Nishiizumi,et al.  Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past , 1980 .

[43]  D. Black On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites , 1972 .

[44]  M. Bourot‐Denise,et al.  The Paris CM Chondrite Yields New Insights on the Onset of Parent Body Alteration , 2010 .

[45]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[46]  A. Bischoff,et al.  Constraints on chondrule agglomeration from fine-grained chondrule rims , 1994 .

[47]  T. Bunch,et al.  Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .

[48]  J. Masarik,et al.  Cosmogenic nuclides in stony meteorites revisited , 2009 .

[49]  S. Schwenzer,et al.  Noble gases in mineral separates from three shergottites: Shergotty, Zagami, and EETA79001 , 2007 .

[50]  E. Anders,et al.  Host Phase of a Strange Xenon Component in Allende , 1975, Science.

[51]  M. Bender,et al.  NUCLIDE PRODUCTION BY COSMIC RAYS IN METEORITES AND ON THE MOON. , 1968 .

[52]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[53]  A. Tielens,et al.  Co-Accretion of Chondrules and Dust in the Solar Nebula , 2008, 0802.4048.

[54]  M. Trieloff,et al.  Noble gas and nitrogen isotopic components in Oceanic Island Basalts , 2009 .

[55]  P. Schmitt‐Kopplin,et al.  Natural organic matter and the event horizon of mass spectrometry. , 2008, Analytical chemistry.

[56]  I. Franchi,et al.  The Puerto Lápice eucrite , 2009 .

[57]  M. Caffee,et al.  The L3–6 chondritic regolith breccia Northwest Africa (NWA) 869: (II) Noble gases and cosmogenic radionuclides , 2011 .

[58]  U. Ott Interstellar grains in meteorites , 1993, Nature.

[59]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[60]  J. Wasson,et al.  Formation of IIAB iron meteorites , 2007 .

[61]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[62]  E. Da̧bek-Złotorzyńska,et al.  Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. , 2010, Analytical chemistry.