Maribo—A new CM fall from Denmark
暂无分享,去创建一个
Ian A. Franchi | Ulrich Ott | Matthias Laubenstein | John T. Wasson | Philippe Schmitt-Kopplin | Henning Haack | Victoria K. Pearson | Herbert Palme | H. Haack | I. Franchi | P. Schmitt‐Kopplin | M. Laubenstein | Z. Gabelica | H. Palme | V. Pearson | J. Wasson | Richard C. Greenwood | R. Greenwood | A. Bischoff | Addi Bischoff | Zelimir Gabelica | A. N. Sørensen | Thomas Grau | M. Horstmann | Marko Gellissen | U. Ott | M. Gellissen | M. Horstmann | T. Grau | Anton Sørensen
[1] J. Evans,et al. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978 , 1982 .
[2] J. Trigo‐Rodríguez,et al. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .
[3] M. Zolensky,et al. Sayama CM2 Chondrite: Fresh but Heavily Altered , 2001 .
[4] C. Pillinger,et al. High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications , 1999 .
[5] Adrian J. Brearley,et al. The Action of Water , 2006 .
[6] R. Clayton,et al. Oxygen isotope studies of carbonaceous chondrites , 1999 .
[7] S. Itoh,et al. Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.
[8] H. Palme,et al. The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus , 2001 .
[9] O. Eugster. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages , 1988 .
[10] E. M. Perdue,et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems , 2007, Analytical and bioanalytical chemistry.
[11] I. Franchi,et al. Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes , 2004 .
[12] J. Blum,et al. The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .
[13] U. Ott. Noble Gases in Meteorites – Trapped Components , 2002 .
[14] A. Bischoff,et al. Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .
[15] Gary R. Huss,et al. Noble gases in presolar diamonds II: Component abundances reflect thermal processing , 1994 .
[16] H. Haack,et al. The Meteoritical Bulletin, No. 96, September 2009 , 2009 .
[17] E. Anders,et al. Interstellar grains in meteorites: II. SiC and its noble gases , 1994 .
[18] J. Armstrong. Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments , 1991 .
[19] H. Haack,et al. The Meteoritical Bulletin, No. 97 , 2010 .
[20] U. Herpers,et al. Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids , 1991 .
[21] E. Steel,et al. Interstellar diamonds in meteorites , 1987, Nature.
[22] L. Fuchs,et al. Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .
[23] J. Geiss,et al. NEUTRONS IN METEORITES , 1961 .
[24] E. Jarosewich,et al. CHEMICAL ANALYSIS OF THE MURCHISON METEORITE , 1971 .
[25] R. Reedy,et al. Cosmogenic neutron-capture-produced nuclides in stony meteorites , 1986 .
[26] R. Wieler. Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .
[27] I. Franchi,et al. Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and Cos , 2010 .
[28] F. Begemann,et al. Trapped noble gases in unequilibrated ordinary chondrites , 1990 .
[29] A. Rubin,et al. Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .
[30] G. Huss,et al. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .
[31] K. Keil,et al. Shock metamorphism of ordinary chondrites , 1991 .
[32] D. Sears,et al. The compositional classification of chondrites: II The enstatite chondrite groups , 1982 .
[33] E. Anders,et al. Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .
[34] J. H. Reynolds,et al. Rare-gas-rich separates from carbonaceous chondrites , 1976 .
[35] R. Pepin,et al. Trapped neon in meteorites — II , 1969 .
[36] K. Keil,et al. Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .
[37] D. Stöffler,et al. Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .
[38] L. Schultz,et al. Noble gases in H-chondrites and potential differences between Antarctic and non-Antarctic meteorites , 1991 .
[39] A. Rubin,et al. Siderophile-element Anomalies in CK Carbonaceous Chondrites: Implications for Parent-body Aqueous Alteration and Terrestrial Weathering of Sulfides , 2006 .
[40] Daniel T. Britt,et al. Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .
[41] Alan E. Rubin,et al. Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .
[42] K. Nishiizumi,et al. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past , 1980 .
[43] D. Black. On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites , 1972 .
[44] M. Bourot‐Denise,et al. The Paris CM Chondrite Yields New Insights on the Onset of Parent Body Alteration , 2010 .
[45] A. Rubin,et al. THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .
[46] A. Bischoff,et al. Constraints on chondrule agglomeration from fine-grained chondrule rims , 1994 .
[47] T. Bunch,et al. Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .
[48] J. Masarik,et al. Cosmogenic nuclides in stony meteorites revisited , 2009 .
[49] S. Schwenzer,et al. Noble gases in mineral separates from three shergottites: Shergotty, Zagami, and EETA79001 , 2007 .
[50] E. Anders,et al. Host Phase of a Strange Xenon Component in Allende , 1975, Science.
[51] M. Bender,et al. NUCLIDE PRODUCTION BY COSMIC RAYS IN METEORITES AND ON THE MOON. , 1968 .
[52] Gerhard Eckel,et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.
[53] A. Tielens,et al. Co-Accretion of Chondrules and Dust in the Solar Nebula , 2008, 0802.4048.
[54] M. Trieloff,et al. Noble gas and nitrogen isotopic components in Oceanic Island Basalts , 2009 .
[55] P. Schmitt‐Kopplin,et al. Natural organic matter and the event horizon of mass spectrometry. , 2008, Analytical chemistry.
[56] I. Franchi,et al. The Puerto Lápice eucrite , 2009 .
[57] M. Caffee,et al. The L3–6 chondritic regolith breccia Northwest Africa (NWA) 869: (II) Noble gases and cosmogenic radionuclides , 2011 .
[58] U. Ott. Interstellar grains in meteorites , 1993, Nature.
[59] Gary R. Huss,et al. PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .
[60] J. Wasson,et al. Formation of IIAB iron meteorites , 2007 .
[61] J. Wasson,et al. Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[62] E. Da̧bek-Złotorzyńska,et al. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. , 2010, Analytical chemistry.