Between the tides: Modelling the elevation of Australia's exposed intertidal zone at continental scale

[1]  Bo Li,et al.  Tracking annual changes of coastal tidal flats in China during 1986-2016 through analyses of Landsat images with Google Earth Engine. , 2020, Remote sensing of environment.

[2]  Stefan A Romanoschi,et al.  Mechanistic Empirical Estimation of Remaining Service Life of Flexible Pavements Based on Simple Deflection Parameters: A Case Study for the State of Texas , 2019, Airfield and Highway Pavements 2019.

[3]  David Thau,et al.  The global distribution and trajectory of tidal flats , 2018, Nature.

[4]  K. Bryan,et al.  Attenuation of Tides and Surges by Mangroves: Contrasting Case Studies from New Zealand , 2018, Water.

[5]  David P. Roy,et al.  Analysis Ready Data: Enabling Analysis of the Landsat Archive , 2018, Remote. Sens..

[6]  Hongyu Ji,et al.  Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta, China , 2018, Environmental Monitoring and Assessment.

[7]  R. Ranasinghe,et al.  The State of the World’s Beaches , 2018, Scientific Reports.

[8]  A. B. Bugnot,et al.  A novel framework for the use of remote sensing for monitoring catchments at continental scales. , 2018, Journal of environmental management.

[9]  Dale Roberts,et al.  Generating Continental Scale Pixel-Based Surface Reflectance Composites in Coastal Regions with the Use of a Multi-Resolution Tidal Model , 2018, Remote. Sens..

[10]  Nan Xu Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA , 2018 .

[11]  Ad Reniers,et al.  On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment , 2018 .

[12]  Joshua T. Kelly,et al.  Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Alfonso Fernández-Sarría,et al.  Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery , 2018, Remote. Sens..

[14]  David P. Roy,et al.  Demonstration of Percent Tree Cover Mapping Using Landsat Analysis Ready Data (ARD) and Sensitivity with Respect to Landsat ARD Processing Level , 2018, Remote. Sens..

[15]  L. Lymburner,et al.  Digital earth Australia – unlocking new value from earth observation data , 2017 .

[16]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[17]  Nicholas C. Coops,et al.  Updating Landsat time series of surface-reflectance composites and forest change products with new observations , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[18]  Chung-Yen Kuo,et al.  Reconstruction of time-varying tidal flat topography using optical remote sensing imageries , 2017 .

[19]  Dale Roberts,et al.  High-Dimensional Pixel Composites From Earth Observation Time Series , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[20]  N. Saintilan,et al.  Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects , 2017, Nature Communications.

[21]  L. Lymburner,et al.  Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations , 2017 .

[22]  Rafaela B. Salum,et al.  Mapping of mangrove extent and zonation using high and low tide composites of Landsat data , 2017, Hydrobiologia.

[23]  Y. Jia,et al.  Identifying priority sites and gaps for the conservation of migratory waterbirds in China's coastal wetlands , 2017 .

[24]  Daniel J. Bearup,et al.  Ecotone formation induced by the effects of tidal flooding: A conceptual model of the mud flat-coastal wetland ecosystem , 2017 .

[25]  Duk-jin Kim,et al.  Estimation of seasonal topographic variation in tidal flats using waterline method: A case study in Gomso and Hampyeong Bay, South Korea , 2016 .

[26]  P. Gong,et al.  Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery , 2016 .

[27]  Chris Roelfsema,et al.  The distribution and protection of intertidal habitats in Australia , 2016 .

[28]  Min Zhang,et al.  Land claim and loss of tidal flats in the Yangtze Estuary , 2016, Scientific Reports.

[29]  L. Lymburner,et al.  Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia , 2016 .

[30]  I. Parnum,et al.  Holocene reef evolution in a macrotidal setting: Buccaneer Archipelago, Kimberley Bioregion, Northwest Australia , 2016, Coral Reefs.

[31]  Jesús Palomar-Vázquez,et al.  Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator , 2016 .

[32]  Adam Lewis,et al.  Rapid, high-resolution detection of environmental change over continental scales from satellite data – the Earth Observation Data Cube , 2016, Int. J. Digit. Earth.

[33]  Martin Jakobsson,et al.  A new digital bathymetric model of the world's oceans , 2015 .

[34]  S. Temmerman,et al.  Role of intertidal wetlands for tidal and storm tide attenuation along a confined estuary: a model study , 2015 .

[35]  Arturo S. Leon,et al.  The intertidal hydraulics of tide-dominated reef platforms , 2015 .

[36]  R. Fuller,et al.  Tidal flats of the Yellow Sea: a review of ecosystem status and anthropogenic threats , 2015 .

[37]  Daniel R. Parsons,et al.  Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary, U.K , 2015 .

[38]  M. Ashraf,et al.  Coastal Processes and Sedimentary Facies in the Zohreh River Delta (Northern Persian Gulf) , 2014 .

[39]  Joanne C. White,et al.  Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science , 2014 .

[40]  Barry W. Eakins,et al.  Challenges in Building Coastal Digital Elevation Models , 2014 .

[41]  Marieke A. Eleveld,et al.  Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: tidal and meteorological effects and biases , 2014 .

[42]  L. Kumar,et al.  Impacts of Climate-Change-Driven Sea Level Rise on Intertidal Rocky Reef Habitats Will Be Variable and Site Specific , 2014, PloS one.

[43]  M. Kirwan,et al.  Tidal wetland stability in the face of human impacts and sea-level rise , 2013, Nature.

[44]  S. Temmerman,et al.  Ecosystem-based coastal defence in the face of global change , 2013, Nature.

[45]  Neil Flood,et al.  Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) , 2013, Remote. Sens..

[46]  Manchun Li,et al.  Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China , 2013, Remote. Sens..

[47]  A. Ogston,et al.  The landward and seaward mechanisms of fine-sediment transport across intertidal flats in the shallow-water region—A numerical investigation , 2013 .

[48]  Manchun Li,et al.  Toward a Method of Constructing Tidal Flat Digital Elevation Models with MODIS and Medium-Resolution Satellite Images , 2012 .

[49]  Stuart R. Phinn,et al.  Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive , 2012, Remote. Sens..

[50]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[51]  M. Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[52]  R. Scrosati,et al.  Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales? , 2011, PloS one.

[53]  V. Klemas,et al.  Beach Profiling and LIDAR Bathymetry: An Overview with Case Studies , 2011 .

[54]  R. Scrosati,et al.  Species richness and diversity across rocky intertidal elevation gradients in Helgoland: testing predictions from an environmental stress model , 2011, Helgoland Marine Research.

[55]  Sarah L. Dance,et al.  Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. , 2010 .

[56]  R. Gens Remote sensing of coastlines: detection, extraction and monitoring , 2010 .

[57]  C. Sharples,et al.  The Australian Coastal Smartline Geomorphic and Stability Map Version 1: Manual and Date Dictionary , 2009 .

[58]  Hsien-Kuo Chang,et al.  Estimation of shoreline position and change from satellite images considering tidal variation , 2009 .

[59]  Jay Gao,et al.  Bathymetric mapping by means of remote sensing: methods, accuracy and limitations , 2009 .

[60]  Dawn J. Wright,et al.  Derivation and Integration of Shallow-Water Bathymetry: Implications for Coastal Terrain Modeling and Subsequent Analyses , 2008 .

[61]  Hongxing Liu,et al.  Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model , 2008 .

[62]  Joong-Sun Won,et al.  Detecting the intertidal morphologic change using satellite data , 2008 .

[63]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[64]  Bo Li,et al.  A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta , 2008 .

[65]  E. Woehler,et al.  Spatial variation of intertidal macroinvertebrates and environmental variables in Robbins Passage wetlands, NW Tasmania , 2008, Hydrobiologia.

[66]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[67]  U. Werner,et al.  Nutrient release from an exposed intertidal sand flat , 2006 .

[68]  Ian L Turner,et al.  Shoreline Definition and Detection: A Review , 2005 .

[69]  H. Possingham,et al.  Intertidal habitat conservation: identifying conservation targets in the absence of detailed biological information , 2005 .

[70]  D. Cahoon,et al.  Global carbon sequestration in tidal, saline wetland soils , 2003 .

[71]  J. Ryu,et al.  Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea , 2002 .

[72]  S. Purcell Intertidal reefs under extreme tidal flux in Buccaneer Archipelago, Western Australia , 2002, Coral Reefs.

[73]  R. Jones,et al.  Global Climate Change and Sea Level Rise: Potential Losses of Intertidal Habitat for Shorebirds , 2002 .

[74]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[75]  J. A. Smith,et al.  A Sensitivity Analysis of the Waterline Method of Constructing a Digital Elevation Model for Intertidal Areas in ERS SAR scene of Eastern England , 2001 .

[76]  J. Ryu,et al.  Estimation of the sedimentation budget in tidal flat using remotely sensed data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[77]  R. J. Williams,et al.  Identification of structures restricting tidal flow in New South Wales, Australia , 1997, Wetlands Ecology and Management.

[78]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[79]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[80]  B. S. McCartney,et al.  Construction of an inter-tidal digital elevation model by the 'water-line' method , 1995 .

[81]  E. Thieler,et al.  Historical Shoreline Mapping (I): Improving Techniques and Reducing Positioning Errors , 1994 .

[82]  David L. Farless,et al.  On the choice of orbits for an altimetric satellite to study ocean circulation and tides , 1987 .

[83]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[84]  Paul S. Bell,et al.  A temporal waterline approach to mapping intertidal areas using X-band marine radar , 2016 .

[85]  Paul Russell,et al.  Evaluating shoreline identification using optical satellite images , 2015 .

[86]  C. O. Delang,et al.  Species Richness and Diversity , 2013 .

[87]  P. Donaldson,et al.  The tidal characteristics and shallow-marine seagrass sedimentology of Robbins Passage and Boullanger bay, far northwest Tasmania , 2012 .

[88]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[89]  T. G. Whiteway,et al.  Australian Bathymetry and Topography Grid , 2009 .

[90]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[91]  Liang-Chien Chen,et al.  Detection of shoreline changes for tideland areas using multi-temporal satellite images , 1998 .

[92]  I. J. Davenport,et al.  Improving inter-tidal digital elevation models constructed by the waterline technique , 1997 .

[93]  E. Barbier,et al.  Economic valuation of wetlands: A guide for policy makers and planners , 1997 .

[94]  J. Bunt,et al.  Mangrove Species Distribution in Relation to Tide at the Seafront and up Rivers , 1985 .

[95]  J. Serra Image Analysis and Mathematical Morphology , 1983 .

[96]  Joshua D. Warner,et al.  Distributed under Creative Commons Cc-by 4.0 Scikit-image: Image Processing in Python , 2022 .