Suslin homology of relative curves with modulus

We compute the Suslin homology of relative curves with modulus. This result may be regarded as a modulus version of the computation of motives for curves, due to Suslin and Voevodsky.

[1]  C. Weibel,et al.  Lecture Notes On Motivic Cohomology , 2006 .

[2]  Jinhyung Park,et al.  Moving lemma for additive higher Chow groups , 2012 .

[3]  D. Kirby,et al.  COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .

[4]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[5]  S. Lichtenbaum Suslin Homology and Deligne 1-Motives , 1993 .

[6]  H'elene Esnault,et al.  An additive version of higher Chow groups , 2001 .

[7]  V. Voevodsky Triangulated categories of motives over a field , 2015 .

[8]  Takao Yamazaki,et al.  Reciprocity sheaves , 2014, Compositio Mathematica.

[9]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .

[10]  A. Ferretti Algebra & Number Theory , 2012 .

[11]  A. Chatzistamatiou,et al.  Vanishing of the higher direct images of the structure sheaf , 2014, Compositio Mathematica.

[12]  X. Sala-i-Martin,et al.  Transfers , 1992 .

[13]  Vladimir Voevodsky,et al.  Cycles, Transfers And Motivic Homology Theories , 2000 .

[14]  A. Meyers Reading , 1999, Language Teaching.

[15]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[16]  F. Binda,et al.  RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS , 2014, Journal of the Institute of Mathematics of Jussieu.

[17]  Takao Yamazaki,et al.  Motives with modulus , 2015, 1511.07124.

[18]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[19]  S. Saito,et al.  Chow group of $0$-cycles with modulus and higher-dimensional class field theory , 2013, 1304.4400.

[20]  Helen Murray Roberts,et al.  Elements of mathematics , 1956 .

[21]  A. Suslin,et al.  Singular homology of abstract algebraic varieties , 1996 .