Robust State Feedback for Interval Systems: An Interval Analysis Approach

The problem of robust state feedback design for a linear dynamical system with uncertain (interval) parameters is considered. The designed state feedback controller has to place all the coefficients ofthe closed loop system characteristic polynomial within assigned closed loop interval characteristic polynomial. A condition is derived using certain known facts about matrix minors and its characteristic equation. The derived condition assigns the closed loop coefficients of the system c polynomial within the assigned closed loop interval polynomial, if certain inequalities admit a positive solution. The method is simple and has advantage that it does not require system canonical transformation. The efficacy of the method is illustrated using numerical examples.

[1]  Paulo A. V. Ferreira,et al.  Analysis and Design of Robust Controllers Using the Interval Diophantine Equation , 2006, Reliab. Comput..

[2]  Robustness Properties of Multilinear Interval Systems , 1992 .

[3]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[4]  Lubomir V. Kolev Interval Analysis for Circuits , 1999 .

[5]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[6]  Yelena M. Smagina A New Approach to the Modal Regulator Synthesis for Interval Plant with Scalar Input , 1997, Reliab. Comput..

[7]  Lee H. Keel,et al.  State-space design of low-order stabilizers , 1990 .

[8]  Enrico Gobbetti,et al.  Encyclopedia of Electrical and Electronics Engineering , 1999 .

[9]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[10]  Shankar P. Bhattacharyya,et al.  Extremal robustness properties of multilinear interval systems , 1994, Autom..

[11]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[12]  Dennis S. Bernstein,et al.  Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds , 1990, Math. Control. Signals Syst..

[13]  Yelena M. Smagina,et al.  Using interval arithmetic for robust state feedback design , 2002, Syst. Control. Lett..

[14]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[15]  Simona Petrakieva,et al.  Stability analysis of linear interval parameter systems via assessing the eigenvalues range , 2003 .

[16]  Alberto Tesi,et al.  Low Order Suboptimal Robust Controller Design for Systems with Structured Uncertainty , 1997 .

[17]  A. Neumaier Interval methods for systems of equations , 1990 .

[18]  Shankar P. Bhattacharyya,et al.  Robust Stabilization Against Structured Perturbations , 1987 .

[19]  Lubomir V. Kolev,et al.  Interval Methods for Circuit Analysis , 1993, Advanced Series in Circuits and Systems.

[20]  Y. Smagina,et al.  Robust modal P and PI regulator synthesis for a plant with interval parameters in the state space , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[21]  Robin J. Evans,et al.  Robust pole assignment , 1987, Autom..

[22]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[23]  Simona Petrakieva,et al.  Outer bounds on the real eingenvalues of interval matrices , 2001 .

[24]  A. Deif,et al.  The Interval Eigenvalue Problem , 1991 .

[25]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .