Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species.

We investigated morphological change of an artificial lipid bilayer membrane induced by oxygen radicals which were generated by non-equilibrium atmospheric pressure plasma. Neutral oxygen species, O((3)Pj) and O2((1)Δg), were irradiated of a supported lipid bilayer existing under a buffer solution at various conditions of dose time and distances, at which the dose amounts of the oxygen species were calculated quantitatively. Observation using an atomic force microscope and a fluorescence microscope revealed that dose of the neutral oxygen species generated nanopores with the diameter of 10-50 nm in a phospholipid bilayer, and finally destructed the bilayer structure. We found that protrusions appeared on the lipid bilayer surface prior to the formation of nanopores, and we attributed the protrusions to the precursor of the nanopores. We propose a mechanism of the pore formation induced by lipid oxidation on the basis of previous experimental and theoretical studies.

[1]  Ryugo Tero,et al.  Supported lipid bilayer membranes on SiO2 and TiO2: substrate effects on membrane formation and shape transformation , 2007, SPIE Optics East.

[2]  S. Locke,et al.  Autoxidation of model membranes. The kinetics and mechanism of autoxidation of mixed phospholipid bilayers , 1987 .

[3]  H. Rhim,et al.  Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma , 2013, Cell Death and Disease.

[4]  Stephan Reuter,et al.  Plasmas for medicine , 2013 .

[5]  M. Hori,et al.  Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning , 2008 .

[6]  T. Ujihara,et al.  Anomalous diffusion in supported lipid bilayers induced by oxide surface nanostructures. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[7]  H. Takikawa,et al.  Plasma irradiation of artificial cell membrane system at solid–liquid interface , 2014 .

[8]  A. Garner,et al.  Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage , 2012, Antimicrobial Agents and Chemotherapy.

[9]  P. Bruggeman,et al.  Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet , 2013 .

[10]  P. Rettberg,et al.  Cold atmospheric plasma – A new technology for spacecraft component decontamination , 2014 .

[11]  A. C. Ziegler,et al.  Biological and physiological role of reactive oxygen species – the good, the bad and the ugly , 2015, Acta physiologica.

[12]  L. Ellerbroek,et al.  Serotype Distribution of Salmonella Isolates from Turkey Ground Meat and Meat Parts , 2013, BioMed research international.

[13]  S. Antimisiaris,et al.  Atmospheric-pressure guided streamers for liposomal membrane disruption , 2012 .

[14]  L. Wan,et al.  AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface , 2006 .

[15]  T. Urisu,et al.  The morphology of GM1x/SM0.6−x/Chol0.4 planar bilayers supported on SiO2 surfaces , 2008 .

[16]  G. Bienert,et al.  Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. , 2014, Biochimica et biophysica acta.

[17]  E. Takai,et al.  Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane , 2013 .

[18]  S. Nishimura,et al.  An epoch-making application of discharge plasma phenomenon to gene-transfer. , 2005, Biotechnology and bioengineering.

[19]  M. Hori,et al.  Growth control of Saccharomyces cerevisiae through dose of oxygen atoms , 2015 .

[20]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[21]  M. Hori,et al.  Quantitative clarification of inactivation mechanism of Penicillium digitatum spores treated with neutral oxygen radicals , 2014 .

[22]  H. Takikawa,et al.  Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma–liquid interface , 2015 .

[23]  M. Hori,et al.  Inactivation effects of neutral reactive-oxygen species on Penicillium digitatum spores using non-equilibrium atmospheric-pressure oxygen radical source , 2013 .

[24]  T. Ujihara,et al.  Lipid bilayer membrane with atomic step structure: supported bilayer on a step-and-terrace TiO2(100) surface. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  Annemie Bogaerts,et al.  A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma , 2015, Scientific Reports.

[26]  R. Tero Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers , 2012, Materials.

[27]  V. Nelea,et al.  The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. , 2006, Biomaterials.

[28]  E. Szili,et al.  On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. , 2015, Biointerphases.

[29]  H. Takikawa,et al.  Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation , 2016 .

[30]  E. Choi,et al.  Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane , 2015 .

[31]  E. Niki,et al.  Turning point in apoptosis/necrosis induced by hydrogen peroxide , 2006, Free radical research.

[32]  M. Hori,et al.  Inactivation Process of Penicillium digitatum Spores Treated with Non-equilibrium Atmospheric Pressure Plasma , 2013 .

[33]  N. Kasai,et al.  Ligand-induced structural changes in a membrane-reconstituted ion channel observed with atomic force microscopy , 2014 .

[34]  E. Szili,et al.  Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells , 2014 .

[35]  O. Orwar,et al.  Molecular phospholipid films on solid supports , 2011 .

[36]  M. Yamazaki,et al.  Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. , 2010, The journal of physical chemistry. B.

[37]  T. von Woedtke,et al.  Differential Influence of Components Resulting from Atmospheric-Pressure Plasma on Integrin Expression of Human HaCaT Keratinocytes , 2013, BioMed research international.

[38]  K. Weltmann,et al.  IInfluence of Plasma Treatment on the Structure and Function of Lipids , 2013 .

[39]  M. Hori,et al.  Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. , 2015, Free radical biology & medicine.

[40]  Thomas von Woedtke,et al.  Estimation of Possible Mechanisms of Escherichia coli Inactivation by Plasma Treated Sodium Chloride Solution , 2011 .

[41]  K. K. Perkins,et al.  Ozone Degrades into Hydroxyl Radical under Physiological Conditions : A Spin Trapping Study. , 1983, Plant physiology.

[42]  S. Antimisiaris,et al.  Assessment of Atmospheric‐Pressure Guided Streamer (Plasma Bullet) Influence on Liposomes with Different Composition and Physicochemical Properties , 2015 .

[43]  Takehiko Sato,et al.  Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma , 2011 .

[44]  E. Choi,et al.  Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma , 2015, PloS one.

[45]  Motohiko Tanaka,et al.  Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates Abeta oligomerization. , 2010, Biochimica et biophysica acta.

[46]  Extracellular Matrix Patterning for Cell Alignment by Atmospheric Pressure Plasma Jets , 2012 .

[47]  S. Han,et al.  Effect of lipid peroxidation on the fluidity of erythrocyte ghost and phospholipid liposomal membranes , 1992 .

[48]  M. Karttunen,et al.  Molecular dynamics study of oxidized lipid bilayers in NaCl solution. , 2013, The journal of physical chemistry. B.

[49]  T. Urisu,et al.  Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. , 2006, Physical chemistry chemical physics : PCCP.

[50]  L. Cwiklik,et al.  Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration , 2010 .

[51]  E. Szili,et al.  A ‘tissue model’ to study the plasma delivery of reactive oxygen species , 2014 .

[52]  Masafumi Ito,et al.  Inactivation of Penicillium digitatum Spores by a High-Density Ground-State Atomic Oxygen-Radical Source Employing an Atmospheric-Pressure Plasma , 2011 .

[53]  A. Mizuno,et al.  Radical reaction in aqueous media injected by atmospheric pressure plasma jet and protective effect of antioxidant reagents evaluated by single-molecule DNA measurement , 2014 .

[54]  F. G. van der Goot,et al.  Pore formation: an ancient yet complex form of attack. , 2008, Biochimica et biophysica acta.

[55]  M. Hori,et al.  Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma , 2012 .

[56]  Masafumi Ito,et al.  Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals , 2015 .

[57]  P. Jurkiewicz,et al.  Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. , 2012, Biochimica et biophysica acta.

[58]  A. Mizuno,et al.  States of Biological Components in Bacteria and Bacteriophages during Inactivation by Atmospheric Dielectric Barrier Discharges , 2008 .

[59]  Y. Setsuhara,et al.  Effects of gas flow on oxidation reaction in liquid induced by He/O2 plasma-jet irradiation , 2015 .

[60]  S. Kumagai,et al.  Development of plasma-on-chip: Plasma treatment for individual cells cultured in media , 2015 .

[61]  Michio Niwano,et al.  The design of molecular sensing interfaces with lipid-bilayer assemblies , 2008 .

[62]  A. Fridman,et al.  Plasma Medicine: Fridman/Plasma , 2012 .

[63]  H. Yin,et al.  Free radical lipid peroxidation: mechanisms and analysis. , 2011, Chemical reviews.

[64]  S. Davies,et al.  Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. , 2014, Chemistry and physics of lipids.

[65]  Satoshi Hamaguchi,et al.  Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low‐Temperature Atmospheric Pressure Plasma Application , 2010 .

[66]  M. Kanzaki,et al.  Improvement of cell membrane permeability using a cell-solution electrode for generating atmospheric-pressure plasma. , 2015, Biointerphases.

[67]  W. Xu,et al.  Sensing small molecule interactions with lipid membranes by local pH modulation. , 2013, Analytical chemistry.

[68]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.