WavePacket: A Matlab package for numerical quantum dynamics. III. Quantum‐classical simulations and surface hopping trajectories

WavePacket is an open‐source program package for numerical simulations in quantum dynamics. Building on the previous Part I (Schmidt and Lorenz, Comput. Phys. Commun. 2017, 213, 223] and Part II (Schmidt and Hartmann, Comput. Phys. Commun. 2018, 228, 229] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum‐classical propagation techniques to WavePacket. There classical phase‐space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces, trajectories may switch between them. To model these transitions, two classes of stochastic algorithms have been implemented: (1) Tully's fewest switches surface hopping and (2) Landau–Zener‐based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring nonadiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.1.0, which is essentially an object‐oriented rewrite of previous versions, allowing to perform fully classical, quantum‐classical and quantum‐mechanical simulations on an equal footing, that is, for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki‐documentation as well as numerous worked‐out demonstration examples with animated graphics are available. © 2019 Wiley Periodicals, Inc.

[1]  D. Yarkony,et al.  Conical Intersections: Electronic Structure, Dynamics and Spectroscopy , 2004 .

[2]  A. Viel,et al.  Higher order (A+E)⊗e pseudo-Jahn-Teller coupling , 2005 .

[3]  Caroline Lasser,et al.  Single switch surface hopping for molecular dynamics with transitions. , 2008, The Journal of chemical physics.

[4]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, Revised and Enlarged Edition , 2004 .

[5]  Hiroki Nakamura,et al.  Nonadiabatic transitions due to curve crossings: Complete solutions of the Landau-Zener-Stueckelberg problems and their applications , 2007 .

[6]  S. D. Ivanov,et al.  Herman-Kluk propagator is free from zero-point energy leakage , 2018, Chemical Physics.

[7]  Todd J. Martínez,et al.  Ab Initio Quantum Molecular Dynamics , 2002 .

[8]  M. Barbatti,et al.  Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. , 2018, Chemical reviews.

[9]  Claude Leforestier,et al.  A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .

[10]  David Beeman,et al.  Some Multistep Methods for Use in Molecular Dynamics Calculations , 1976 .

[11]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[12]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[13]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[14]  Illia Horenko,et al.  Multidimensional classical Liouville dynamics with quantum initial conditions , 2002 .

[15]  Joseph E. Subotnik,et al.  Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. , 2013, The Journal of chemical physics.

[16]  R. Mitrić,et al.  Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics , 2009 .

[17]  David Sattlegger,et al.  Discretising the Herman–Kluk propagator , 2016, Numerische Mathematik.

[18]  C. Lasser,et al.  Single switch surface hopping for a model of pyrazine. , 2008, The Journal of chemical physics.

[19]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[20]  H. Tal-Ezer,et al.  An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .

[21]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[22]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[23]  Stefan Teufel,et al.  Construction and validation of a rigorous surface hopping algorithm for conical crossings , 2007 .

[24]  C. Lasser,et al.  Landau-Zener type surface hopping algorithms. , 2014, The Journal of chemical physics.

[25]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[26]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[27]  Hans Lischka,et al.  Newton‐X: a surface‐hopping program for nonadiabatic molecular dynamics , 2014 .

[28]  A. Akimov,et al.  Recent Progress in Surface Hopping: 2011-2015. , 2016, The journal of physical chemistry letters.

[29]  T. Carrington,et al.  Discrete‐Variable Representations and their Utilization , 2007 .

[30]  Carsten Hartmann,et al.  WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction , 2017, Comput. Phys. Commun..

[31]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[32]  P. Marquetand,et al.  SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. , 2011, Journal of chemical theory and computation.

[33]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[34]  M. Baer Beyond Born-Oppenheimer : conical intersections and electronic nonadiabatic coupling terms , 2006 .

[35]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[36]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[37]  I. Horenko,et al.  Fully adaptive propagation of the quantum-classical Liouville equation. , 2004, The Journal of chemical physics.

[38]  P. Marquetand,et al.  Nonadiabatic dynamics: The SHARC approach , 2018, Wiley interdisciplinary reviews. Computational molecular science.

[39]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[40]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[41]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[42]  G. Ciccotti,et al.  Mixed quantum-classical dynamics , 1999 .

[43]  Ronnie Kosloff,et al.  A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid , 1986 .

[44]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[45]  H. Spohn,et al.  The time-dependent Born-Oppenheimer approximation , 2007, 0712.4369.

[46]  Joel M Bowman,et al.  Beyond Born-Oppenheimer , 2008, Science.

[47]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[48]  C. Lasser,et al.  Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations. , 2014, The Journal of chemical physics.

[49]  Raymond Kapral,et al.  Analysis of geometric phase effects in the quantum-classical Liouville formalism. , 2013, The Journal of chemical physics.

[50]  Ulf Lorenz,et al.  WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations , 2016, Comput. Phys. Commun..

[51]  Christian B. Mendl,et al.  The FermiFab toolbox for fermionic many-particle quantum systems , 2011, Comput. Phys. Commun..

[52]  A. Viel,et al.  Effects of higher order Jahn-Teller coupling on the nuclear dynamics. , 2004, The Journal of chemical physics.

[53]  Joseph E Subotnik,et al.  Understanding the Surface Hopping View of Electronic Transitions and Decoherence. , 2016, Annual review of physical chemistry.

[54]  Ahmet S. Cakmak,et al.  Explicit integration method for the time‐dependent Schrodinger equation for collision problems , 1978 .

[55]  I. Horenko,et al.  Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets , 2002 .

[56]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[57]  A. K. Belyaev,et al.  Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories , 2011 .

[58]  J. Tully Perspective: Nonadiabatic dynamics theory. , 2012, The Journal of chemical physics.