Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence

In deep subsurface sediments of the Juan de Fuca Ridge Flank, porewater acetate that is depleted in 13 C relative to sedimentary organic matter indicates an acetogenic component to total acetate production. Thermodynamic calculations indicate common fermentation products or lignin monomers as potential substrates for acetogenesis. The classic autotrophic reaction may contribute as well, provided that dihydrogen (H 2 ) concentrations are not drawn down to the thermodynamic thresholds of the energetically more favorable processes of sulfate reduction and methanogenesis. A high diversity of novel formyl tetrahydrofolate synthetase (fhs) genes throughout the upper half of the sediment column indicates the genetic potential for acetogenesis. Our results suggest that a substantial fraction of the acetate produced in marine sediment porewaters may derive from acetogenesis, in addition to the conventionally invoked sources fermentation and sulfate reduction.

[1]  T. E. Thompson,et al.  Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain , 1980, Current Microbiology.

[2]  R. Parkes,et al.  Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. , 2002, FEMS microbiology ecology.

[3]  L. Ljungdahl,et al.  Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. , 1990, Biochemistry.

[4]  V. Mikhailov,et al.  Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan. , 2003, International journal of systematic and evolutionary microbiology.

[5]  S. D. de Vries,et al.  Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates , 2004, Archives of Microbiology.

[6]  E. Provost,et al.  Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water , 2007 .

[7]  B. Patel,et al.  Eubacterium aggreganssp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. , 1998, Anaerobe.

[8]  Georg Fuchs,et al.  Carbon Isotope Fractionation by Autotrophic Bacteria with Three Different C02 Fixation Pathways , 1989 .

[9]  K. Hanselmann,et al.  Growth on methanol and conversion of methoxylated aromatic substrates by Desulfotomaculum orientis in the presence and absence of sulfate , 1995 .

[10]  J. Kreft,et al.  Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds , 2004, Archives of Microbiology.

[11]  David L. Valentine,et al.  Thermodynamic Ecology of Hydrogen-Based Syntrophy , 2001 .

[12]  J. Middelburg,et al.  Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments , 1998 .

[13]  Stephen H. Zinder,et al.  Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture , 1984, Archives of Microbiology.

[14]  R. Tanner,et al.  Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.

[15]  A. Nozhevnikova,et al.  Acetogenesis at Low Temperature , 1994 .

[16]  Min Pan,et al.  Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. , 2004, Genome research.

[17]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[18]  P. Claus,et al.  Characterization of methanogenic Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany) , 2007 .

[19]  Thomas Egli,et al.  The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates , 1995 .

[20]  Stephen H. Zinder,et al.  Isolation and Characterization of a Thermophilic Bacterium Which Oxidizes Acetate in Syntrophic Association with a Methanogen and Which Grows Acetogenically on H2-CO2 , 1988, Applied and environmental microbiology.

[21]  H. Drake,et al.  Acetogenesis coupled to the oxidation of aromatic aldehyde groups , 1994, Archives of Microbiology.

[22]  G. Gottschalk,et al.  Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide , 2004, Archives of Microbiology.

[23]  E. Ivanova,et al.  Marinomonas pontica sp. nov., isolated from the Black Sea. , 2005, International journal of systematic and evolutionary microbiology.

[24]  H. Cypionka,et al.  Desulfosporomusa polytropa gen. nov., sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake , 2004, Archives of Microbiology.

[25]  N. P. Bolotina,et al.  New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. , 2004, Archives of Microbiology.

[26]  B. Schink,et al.  Fermentative degradation of triethanolamine by a homoacetogenic bacterium , 1994, Archives of Microbiology.

[27]  J. Imhoff,et al.  Rearrangement of the Species and Genera of the Phototrophic “Purple Nonsulfur Bacteria” , 1984 .

[28]  J. Doré,et al.  Acetogenic coccoid spore-forming bacteria isolated from the rumen. , 1996, Research in microbiology.

[29]  F. Millero,et al.  Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. , 1982 .

[30]  J. Hedges,et al.  Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments , 1990 .

[31]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[32]  F. Rainey,et al.  Culturable Populations of Sporomusa spp. and Desulfovibrio spp. in the Anoxic Bulk Soil of Flooded Rice Microcosms , 1999, Applied and Environmental Microbiology.

[33]  T. Cappenberg Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments , 2004, Antonie van Leeuwenhoek.

[34]  S. Holland,et al.  Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. , 2006, International journal of systematic and evolutionary microbiology.

[35]  E. Shock,et al.  Organic acids in hydrothermal solutions: standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. , 1995, American journal of science.

[36]  B. Schink,et al.  Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe , 1984, Archives of Microbiology.

[37]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[38]  L. Young,et al.  A Gram-Negative Anaerobic Bacterium That Utilizes O-Methyl Substituents of Aromatic Acids , 1985, Applied and environmental microbiology.

[39]  B. Jørgensen,et al.  Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. , 2007, FEMS microbiology ecology.

[40]  Extremely halophilic, methylotrophic, anaerobic bacteria , 1990 .

[41]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[42]  C. Arnosti,et al.  Anaerobic carbon transformation: Experimental studies with flow-through cells , 2003 .

[43]  K. Scow,et al.  Biodegradation of Methyl tert-Butyl Ether by a Bacterial Pure Culture , 1999, Applied and Environmental Microbiology.

[44]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[45]  J. Wiegel,et al.  Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. , 1997, International journal of systematic bacteriology.

[46]  M. Moran,et al.  Transformation of Sulfur Compounds by an Abundant Lineage of Marine Bacteria in the α-Subclass of the ClassProteobacteria , 1999, Applied and Environmental Microbiology.

[47]  B. B. J�rgensen,et al.  Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment , 1981, Applied and environmental microbiology.

[48]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[49]  E. Stackebrandt,et al.  Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. , 2004, International journal of systematic and evolutionary microbiology.

[50]  C. Velzeboer,et al.  Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol , 2004, Antonie van Leeuwenhoek.

[51]  J. Kuever,et al.  Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. , 1999, International journal of systematic bacteriology.

[52]  C. R. Lovell,et al.  Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria , 1991, Applied and environmental microbiology.

[53]  Harold L Drake,et al.  Physiology of the thermophilic acetogen Moorella thermoacetica. , 2004, Research in microbiology.

[54]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[55]  A. Fisher,et al.  Provenance, Stratigraphic Architecture, and Hydrogeologic Influence of Turbidites on the Mid-Ocean Ridge Flank of Northwestern Cascadia Basin, Pacific Ocean , 2005 .

[56]  C. Martens,et al.  Acetogenesis from CO2 in an anoxic marine sediment , 1999 .

[57]  J. Fuhrman,et al.  Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. , 2003, International journal of systematic and evolutionary microbiology.

[58]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1989, Archives of Microbiology.

[59]  K. Stetter,et al.  Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes , 2003 .

[60]  H. Drake,et al.  Ecological consequences of the phylogenetic and physiological diversities of acetogens , 2002, Antonie van Leeuwenhoek.

[61]  R. Conrad,et al.  Intermediary metabolism in methanogenic paddy soil and the influence of temperature , 1995 .

[62]  N. Blair,et al.  The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment , 1992 .

[63]  T. Miller,et al.  Bacterial strains from human feces that reduce CO2 to acetic acid , 1993, Applied and environmental microbiology.

[64]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[65]  Kazuhiro Tanaka,et al.  Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus , 2004, Archives of Microbiology.

[66]  Satoshi Nakagawa,et al.  Trends in Basalt and Sediment Core Contamination During IODP Expedition 301 , 2006 .

[67]  M. Choudhary,et al.  Genome Analyses of Three Strains of Rhodobacter sphaeroides: Evidence of Rapid Evolution of Chromosome II , 2006, Journal of bacteriology.

[68]  P. Lawson,et al.  Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. , 2000, International journal of systematic and evolutionary microbiology.

[69]  G. Bertin,et al.  In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae , 1995, Applied and environmental microbiology.

[70]  J. Suflita,et al.  H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium , 1993, Applied and environmental microbiology.

[71]  C. A. Stuart,et al.  Taxonomic Relationships in the Genus Proteus , 1943 .

[72]  E. Mikami,et al.  Vitamin B2 production by Acetobacterium sp. and its tetrachloromethane-resistant mutants , 1992 .

[73]  B. Ollivier,et al.  Isolation and characterization ofSporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium , 1985, Archives of Microbiology.

[74]  B. Barrell,et al.  The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. , 2003, Nucleic acids research.

[75]  Kyosti V. Sarkanen,et al.  Lignins : occurrence, formation, structure and reactions , 1971 .

[76]  M. P. Bryant,et al.  Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species , 1981, Applied and environmental microbiology.

[77]  D. Schrag,et al.  Dolomite formation in the dynamic deep biosphere: results from the Peru Margin , 2007 .

[78]  J. Winter,et al.  Anaerobic degradation of o-phenylphenol by mixed and pure cultures , 1989, Applied Microbiology and Biotechnology.

[79]  N. Pfennig,et al.  Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields , 1981, Archives of Microbiology.

[80]  G. Gottschalk,et al.  Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. , 1984, Archives of Microbiology.

[81]  M. Leclerc,et al.  13C-NMR study of glucose and pyruvate catabolism in four acetogenic species isolated from the human colon. , 1997, FEMS microbiology letters.

[82]  Ralph S. Wolfe,et al.  Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing, Anaerobic Bacteria , 1977 .

[83]  Hole 861A,et al.  Shipboard Scientific Party , 2006 .

[84]  J. Hayes,et al.  Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry. , 1994, Organic geochemistry.

[85]  Marinomonas aquamarina sp. nov., isolated from oysters and seawater. , 2005, Systematic and applied microbiology.

[86]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[87]  J. Postgate,et al.  Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. , 1966, Bacteriological reviews.

[88]  A. Oren,et al.  Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. , 1990, International journal of systematic bacteriology.

[89]  G Acker,et al.  Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. , 2000, International journal of systematic and evolutionary microbiology.

[90]  J. Doré,et al.  Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile. , 1998, Anaerobe.

[91]  M. McInerney,et al.  Anaerobic microbial metabolism can proceed close to thermodynamic limits , 2002, Nature.

[92]  J. Leigh,et al.  Acetogenium kivui, a new thermophilic hydrogen-oxidizing acetogenic bacterium , 1981, Archives of Microbiology.

[93]  K. Finster,et al.  Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria , 1992, Archives of Microbiology.

[94]  R. Owen,et al.  Pseudomonas paucimobilis, a New Species Isolated from Human Clinical Specimens, the Hospital Environment, and Other Sources , 1977 .

[95]  M. P. Bryant,et al.  Peptostreptococcus productus strain that grows rapidly with CO as the energy source , 1984, Applied and environmental microbiology.

[96]  H. Drake,et al.  Biotransformations of aromatic aldehydes by acetogenic bacteria. , 1990, FEMS microbiology letters.

[97]  J. Tiedje,et al.  Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei , 1991, Archives of Microbiology.

[98]  M. Lidstrom,et al.  Novel Formaldehyde-Activating Enzyme inMethylobacterium extorquens AM1 Required for Growth on Methanol , 2000, Journal of bacteriology.

[99]  G. Gottschalk,et al.  Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide , 2005, Current Microbiology.

[100]  F. Widdel,et al.  Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus , 1987, Archives of Microbiology.

[101]  R. Devereux,et al.  Physiological Ecology of Clostridium glycolicum RD-1, an Aerotolerant Acetogen Isolated from Sea Grass Roots , 2001, Applied and Environmental Microbiology.

[102]  K. Hinrichs,et al.  Significant contribution of Archaea to extant biomass in marine subsurface sediments , 2008, Nature.

[103]  Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. , 2004, FEMS microbiology ecology.

[104]  P. Claus,et al.  Carbon Isotope Fractionation during Acetoclastic Methanogenesis by Methanosaeta concilii in Culture and a Lake Sediment , 2006, Applied and Environmental Microbiology.

[105]  W. Hijnen,et al.  Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter , 1982, Applied and environmental microbiology.

[106]  G. Weinstock,et al.  Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[107]  U. Göbel,et al.  Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. , 1997, FEMS microbiology reviews.

[108]  K. T. Wieringa,et al.  The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria , 1939, Antonie van Leeuwenhoek.

[109]  J. Emlen The Role of Time and Energy in Food Preference , 1966, The American Naturalist.

[110]  Y. Kamagata,et al.  Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. , 2000, International journal of systematic and evolutionary microbiology.

[111]  A. Brune,et al.  Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. , 2006, Environmental microbiology.

[112]  M. Friedrich,et al.  Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate , 2002, Archives of Microbiology.

[113]  J. Postgate,et al.  Classification of the spore-forming sulfate-reducing bacteria. , 1965, Bacteriological reviews.

[114]  B. Patel,et al.  Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. , 1999, International journal of systematic bacteriology.

[115]  S. Shivaji,et al.  Marinomonas ushuaiensis sp. nov., isolated from coastal sea water in Ushuaia, Argentina, sub-Antarctica. , 2005, International journal of systematic and evolutionary microbiology.

[116]  J. Suflita,et al.  Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria , 1988, Applied and environmental microbiology.

[117]  M. Krüger,et al.  Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments. , 2010 .

[118]  M. P. Bryant,et al.  Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids and Produces Butyrate , 1985 .

[119]  Pratima Gupta,et al.  Marinomonas polaris sp. nov., a psychrohalotolerant strain isolated from coastal sea water off the subantarctic Kerguelen islands. , 2006, International journal of systematic and evolutionary microbiology.

[120]  Kai Finster,et al.  Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum , 2005, Antonie van Leeuwenhoek.

[121]  A. Stams,et al.  Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. , 2007, Environmental microbiology.

[122]  R. Devereux,et al.  Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii , 1999, Applied and Environmental Microbiology.

[123]  H. Aldrich,et al.  Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus , 1987, Archives of Microbiology.

[124]  Y. Benno,et al.  Clostridium coccoides, a New Species from the Feces of Mice , 1976 .

[125]  G. Gottschalk,et al.  Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide , 1982 .

[126]  T. Barth,et al.  Deep marine biosphere fuelled by increasing organic matter availability during burial and heating , 1997, Nature.

[127]  D. Sorokin Sulfitobacter pontiacus gen. nov., sp. nov. ― A new heterotrophic bacterium from the black sea, specialized on sulfite oxidation , 1995 .

[128]  S. Lucas,et al.  Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1 , 2006, Journal of bacteriology.

[129]  M. Weinberg,et al.  Données récentes sur les microbes anaérobies et leur rôle en pathologie , 1927 .

[130]  B. Jarvis,et al.  Rhizobium loti, a New Species of Legume Root Nodule Bacteria , 1982 .

[131]  M. Torres,et al.  The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin , 2009 .

[132]  M. Leclerc,et al.  H2/CO2 metabolism in acetogenic bacteria isolated from the human colon. , 1997, Anaerobe.

[133]  Ralf Cord-Ruwisch,et al.  The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor , 1988, Archives of Microbiology.

[134]  Rika Anderson,et al.  Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Thauer,et al.  Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus , 1989, Archives of Microbiology.

[136]  M. Winfrey,et al.  Temperature limitation of methanogenesis in aquatic sediments , 1976, Applied and environmental microbiology.

[137]  Byung Hong Kim,et al.  CO Fermentation of Eubacterium limosum KIST612 , 1998 .

[138]  B. Patel,et al.  Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. , 2001, International journal of systematic and evolutionary microbiology.

[139]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[140]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[141]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[142]  Xuchen Wang,et al.  Radiocarbon and stable carbon isotope compositions of organic compound classes in sediments from the NE Pacific and Southern Oceans , 2001 .

[143]  H. Schütz,et al.  Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment , 1989 .

[144]  A. Poisson,et al.  Carbon isotopic fractionation by plankton in the Southern Indian Ocean: relationship between δ of particulate organic carbon and dissolved carbon dioxide , 1998 .

[145]  H. Drake,et al.  Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. , 1992, FEMS microbiology letters.

[146]  D D Wagman,et al.  Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)] , 1989 .

[147]  J. Hayes,et al.  Carbon isotope effects associated with autotrophic acetogenesis. , 1989, Organic geochemistry.

[148]  M. Collins,et al.  A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. , 1996, FEMS microbiology letters.

[149]  A. Fisher,et al.  Rough Basement Transect (Sites 1026 and 1027) , 1997 .

[150]  J. Leedle,et al.  Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen , 2004, Archives of Microbiology.

[151]  E. Stackebrandt,et al.  Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria , 1999 .

[152]  D. Dyrssen Aquatic Chemistry—an introduction emphasizing chemical equilibria in natural waters , 1972 .

[153]  F. Widdel,et al.  Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species , 1985, Archives of Microbiology.

[154]  E. Mikami,et al.  Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate , 2004, Archives of Microbiology.

[155]  Henry Naveau,et al.  Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide , 1994, Archives of Microbiology.

[156]  S. Wakeham,et al.  Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean , 1997 .

[157]  M. Popoff,et al.  Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide , 1987 .

[158]  R. Hodson,et al.  Depletion of 13C in lignin and its implications for stable carbon isotope studies , 1987, Nature.

[159]  J. Zeikus,et al.  Growth ofClostridium thermoaceticum on H2/CO2 or CO as energy source , 2005, Current Microbiology.

[160]  Erko Stackebrandt,et al.  Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil , 2000, Archives of Microbiology.

[161]  T. Oh,et al.  Marinomonas dokdonensis sp. nov., isolated from sea water. , 2005, International journal of systematic and evolutionary microbiology.

[162]  Uri Manor,et al.  Quantification of co-occurring reaction rates in deep subseafloor sediments , 2008 .

[163]  C. Martens,et al.  Volatile fatty acid cycling in organic-rich marine sediments , 1982 .

[164]  F. Solano,et al.  Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. , 1999, International journal of systematic bacteriology.

[165]  J. Kreft,et al.  Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4 , 1993, Archives of Microbiology.

[166]  M. McInerney,et al.  Benzoate Fermentation by the Anaerobic BacteriumSyntrophus aciditrophicus in the Absence of Hydrogen-Using Microorganisms , 2001, Applied and Environmental Microbiology.

[167]  K. Pedersen,et al.  Characterization of microbial processes in deep aquifers of the Fennoscandian Shield , 2008 .

[168]  H. Drake,et al.  Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron acceptors , 1996 .

[169]  J. Breznak,et al.  Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites , 1988, Archives of Microbiology.

[170]  C. R. Lovell,et al.  Recovery and Analysis of Formyltetrahydrofolate Synthetase Gene Sequences from Natural Populations of Acetogenic Bacteria , 2001, Applied and Environmental Microbiology.

[171]  B. Schink,et al.  Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate , 1989, Archives of Microbiology.

[172]  F. Widdel,et al.  Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes , 2006 .

[173]  G. Diekert,et al.  Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium , 1991, Archives of Microbiology.

[174]  J. Duarte Lignin biodegradation and transformation , 1994 .

[175]  D. Boone,et al.  Isolation and Characterization of Methanocorpusculum labreanum sp. nov. from the LaBrea Tar Pits , 1989 .

[176]  J. Doré,et al.  Diversity of H2/CO2-Utilizing Acetogenic Bacteria from Fecesof Non-Methane-Producing Humans , 1996, Current Microbiology.

[177]  T. Miller,et al.  Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen , 1995, Applied and environmental microbiology.

[178]  B. Schink,et al.  Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria , 1988, Applied and environmental microbiology.

[179]  S. Zinder,et al.  Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture , 1988, Archives of Microbiology.

[180]  K. Hanselmann,et al.  Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments , 1982, Archives of Microbiology.

[181]  J. Suflita,et al.  Characterization of Two Subsurface H2-Utilizing Bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicumsp. nov., and Their Ecological Roles , 1999, Applied and Environmental Microbiology.

[182]  John L. Johnson,et al.  Emendation of Bacteroidaceae and Butyrivibrio and Descriptions of Desulfomonas gen. nov. and Ten New Species in the Genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus , 1976 .

[183]  A. Brauman,et al.  Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus , 1991, Archives of Microbiology.

[184]  G. Gottschalk,et al.  Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum , 2004, Archiv für Mikrobiologie.

[185]  K. Pedersen,et al.  Distribution of culturable microorganisms in Fennoscandian Shield groundwater. , 2002, FEMS microbiology ecology.

[186]  T. Stadtman,et al.  Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp. , 1959, Journal of bacteriology.

[187]  B. Schink,et al.  Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. , 1996, International journal of systematic bacteriology.

[188]  G. Gibson,et al.  Acetogenesis from H2 and CO2 by methane and non-methane producing human colonic bacteria , 1996 .

[189]  N. Nishio,et al.  Growth kinetics of Acetobacterium sp. on methanol‐formate in continuous culture , 2000, Journal of applied microbiology.

[190]  F. Widdel,et al.  Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. , 1987, Archives of Microbiology.

[191]  J. Doré,et al.  Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen. , 1995, FEMS microbiology letters.

[192]  R. E. Hungate,et al.  Hydrogen utilization by clostridia in sewage sludge , 1977, Applied and environmental microbiology.

[193]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[194]  R. Conrad,et al.  Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate. , 2008, Environmental science & technology.

[195]  K. T. Wieringa,et al.  Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden , 1936, Antonie van Leeuwenhoek.

[196]  T. Hoehler Biological energy requirements as quantitative boundary conditions for life in the subsurface , 2004 .

[197]  T. Miller,et al.  Acetogenesis from CO2 in the Human Colonic Ecosystem , 1994 .

[198]  Anna Obraztsova,et al.  Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors , 1998 .

[199]  M. Leclerc,et al.  Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces , 1996, Archives of Microbiology.

[200]  E. Stackebrandt,et al.  Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-Proteobacteria. , 1999, International journal of systematic bacteriology.

[201]  A. Poisson,et al.  Organic carbon isotopic composition of phytoplankton and sea-surface pCO2 reconstructions in the Southern Indian Ocean during the last 50,000 yr , 1996 .

[202]  Stephan C Schuster,et al.  Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment , 2008, Proceedings of the National Academy of Sciences.

[203]  K. Hinrichs,et al.  Online δ13C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography‐isotope ratio mass spectrometry , 2006 .

[204]  K. Pedersen,et al.  Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers , 1997 .

[205]  S. Kawai,et al.  Cloning and Sequencing of theSphingomonas (Pseudomonas)paucimobilis Gene Essential for the O Demethylation of Vanillate and Syringate , 1998, Applied and Environmental Microbiology.

[206]  D. Canfield,et al.  Pathways of organic carbon oxidation in three continental margin sediments. , 1993, Marine geology.

[207]  P. Egeberg,et al.  Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge) , 1998 .

[208]  P. Grimont,et al.  Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. , 2002, International journal of systematic and evolutionary microbiology.

[209]  F. Prahl,et al.  Terrestrial organic carbon contributions to sediments on the Washington margin , 1994 .

[210]  B. Schink,et al.  Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion , 1987, Archives of Microbiology.

[211]  V. Müller,et al.  Energy Conservation in Acetogenic Bacteria , 2003, Applied and Environmental Microbiology.

[212]  A. Mgaidi,et al.  Effect of salts on the solubility of phenolic compounds: experimental measurements and modelling , 2007 .

[213]  I. Bousfield,et al.  Reclassification of Bacteria of the Genus Protomonas Urakami and Komagata 1984 in the Genus Methylobacterium (Patt, Cole, and Hanson) Emend. Green and Bousfield 1983 , 1985 .

[214]  Edgar C. Clausen,et al.  Biological production of alcohols from coal through indirect liquefaction , 1988 .

[215]  C. Pedrós-Alió,et al.  Reinekea blandensis sp. nov., a marine, genome-sequenced gammaproteobacterium. , 2007, International journal of systematic and evolutionary microbiology.

[216]  C. R. Lovell,et al.  Community-level analysis: key genes of CO2-reductive acetogenesis. , 2005, Methods in enzymology.

[217]  B. Schink,et al.  Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium , 2004, Archives of Microbiology.

[218]  Alfons J. M. Stams,et al.  Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor , 2003, Archives of Microbiology.

[219]  T. Egli,et al.  Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture , 1996, Applied and environmental microbiology.

[220]  M. Blaut,et al.  Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides , 1997, Applied and environmental microbiology.

[221]  J. Leadbetter,et al.  Acetogenesis from H2 plus CO2 by spirochetes from termite guts. , 1999, Science.

[222]  E. Stackebrandt,et al.  Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. , 1997, International journal of systematic bacteriology.

[223]  T. D. Brock,et al.  A Thermophilic, Acidophilic Mycoplasma Isolated from a Coal Refuse Pile , 1970, Science.

[224]  P. Jackman,et al.  Classification of corynebacteria associated with endocarditis (group JK) as Corynebacterium jeikeium sp. nov. , 1987 .

[225]  K. Pedersen,et al.  Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland , 2008, The ISME Journal.

[226]  P. Lindahl,et al.  The Evolution of Acetyl-CoA Synthase , 2001, Origins of life and evolution of the biosphere.

[227]  J. Hayes,et al.  Isotopic analyses based on the mass spectrum of carbon dioxide. , 1985, Analytical chemistry.

[228]  M. Madigan,et al.  Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. , 2007, FEMS microbiology letters.

[229]  T. Stadtman,et al.  ANAEROBIC DEGRADATION OF CHOLINE , 2003 .

[230]  B. Patel,et al.  Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate-reducing bacterium Thauera sp. strain Cin3,4 , 2005 .

[231]  C. Martens,et al.  Thermodynamic control on hydrogen concentrations in anoxic sediments , 1998 .

[232]  B. Schink,et al.  Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. , 2004, Biodegradation.

[233]  M. Kane,et al.  Acetonema longum gen.nov.sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis , 1991, Archives of Microbiology.

[234]  P. Crill,et al.  Methane production from bicarbonate and acetate in an anoxic marine sediment , 1986 .

[235]  G. Fuchs,et al.  Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum , 1988, Archives of Microbiology.

[236]  Jared R. Leadbetter,et al.  Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the First Spirochetes Isolated from Termite Guts , 2004, Applied and Environmental Microbiology.

[237]  D. Dykhuizen,et al.  An Experimental Model: Bacterial Specialists and Generalists Competing in Chemostats , 1980 .

[238]  J. Suflita,et al.  Confined subsurface microbial communities in Cretaceous rock , 1997, Nature.

[239]  J. Scholten,et al.  Energetics of Syntrophic Propionate Oxidation in Defined Batch and Chemostat Cocultures , 2000, Applied and Environmental Microbiology.

[240]  J. Winter,et al.  Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains , 1990, Applied Microbiology and Biotechnology.

[241]  H. Boga,et al.  Hydrogen-Dependent Oxygen Reduction by Homoacetogenic Bacteria Isolated from Termite Guts , 2003, Applied and Environmental Microbiology.

[242]  G. Ritter,et al.  A New Type of Glucose Fermentation by Clostridium thermoaceticum , 1942, Journal of bacteriology.

[243]  T. Treude,et al.  Fluids from the Oceanic Crust Support Microbial Activities within the Deep Biosphere , 2008 .

[244]  H. Drake,et al.  Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. , 1997, International journal of systematic bacteriology.

[245]  M. Friez,et al.  Formyltetrahydrofolate Synthetase Sequences from Salt Marsh Plant Roots Reveal a Diversity of Acetogenic Bacteria and Other Bacterial Functional Groups , 2003, Applied and Environmental Microbiology.

[246]  J. Kuenen,et al.  SELECTIVE ENRICHMENT OF FACULTATIVELY CHEMOLITHOTROPHIC THIOBACILLI AND RELATED ORGANISMS IN CONTINUOUS CULTURE , 1980 .

[247]  R. Parkes,et al.  Bacterial activity and production in near-surface estuarine and freshwater sediments , 1996 .

[248]  B. Schink,et al.  Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium , 1991, Archives of Microbiology.

[249]  B. Fry,et al.  δ13C Measurements as Indicators of Carbon Flow in Marine and Freshwater Ecosystems , 1989 .

[250]  G. Zavarzin,et al.  Methanogenesis at low temperatures by microflora of tundra wetland soil , 2004, Antonie van Leeuwenhoek.

[251]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[252]  J. Kuever,et al.  Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol , 2004, Archives of Microbiology.

[253]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1988, Archives of Microbiology.

[254]  N. Pfennig,et al.  Growth yield increase linked to caffeate reduction in Acetobacterium woodii , 1984, Archives of Microbiology.

[255]  R. Mah,et al.  Acetoanaerobium noterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate from H2 and CO2 , 1985 .

[256]  M. Rother,et al.  Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[257]  P. Grimont,et al.  Replacement of NCTC 4175, the current type strain of Proteus vulgaris, with ATCC 29905. Request for an opinion. , 1995, International journal of systematic bacteriology.

[258]  B. Schink,et al.  Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. , 2004, Archives of Microbiology.

[259]  D. Lovley,et al.  Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments , 1988 .

[260]  M. Fogel,et al.  Reworking of amino acid in marine sediments: Stable carbon isotopic composition of amino acids in sediments along the Washington coast , 2001 .

[261]  P. Abelson,et al.  Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[262]  S. Ragsdale,et al.  Enzymology of the acetyl-CoA pathway of CO2 fixation. , 1991, Critical reviews in biochemistry and molecular biology.

[263]  T. Keng,et al.  Treponema denticola (ex Brumpt 1925) sp. nov., nom. rev., and identification of new spirochete isolates from periodontal pockets. , 1993, International journal of systematic bacteriology.