Tropical wetland ecosystem service assessments in East Africa; A review of approaches and challenges

Abstract East African wetlands are hotspots of ecosystem services, particularly for climate regulation, water provision and food production. We review the ability of current approaches to ecosystem service assessments to capture important social-ecological dynamics to provide insight for wetland management and human wellbeing. We synthesise evidence of human influences on wetlands and gauge the suitability of models and tools for simulating spatial and temporal dynamics, and land management on multiple ecosystem functions and services. Current approaches are largely unsuitable for advancing knowledge of social-ecological system dynamics and could be greatly improved with inter-disciplinary model integration to focus upon interactions between multiple ecosystem functions and services. Modelling can alleviate challenges that tropical wetland ecosystem services management faces and support decision-making of land managers and policymakers. Better understanding of social-ecological systems dynamics is crucial in East Africa where societies are vulnerable to poverty and climate variability, whilst dependent upon agrarian-ecological based economies.

[1]  Edward Maltby,et al.  Ecosystem services of wetlands: pathfinder for a new paradigm , 2011 .

[2]  Reinoud Segers,et al.  Methane production and methane consumption: a review of processes underlying wetland methane fluxes , 1998 .

[3]  S. Whalen,et al.  Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere , 2005 .

[4]  R. Naiman,et al.  The Ecology of Interfaces: Riparian Zones , 1997 .

[5]  L. Rebelo,et al.  Wetlands, agriculture and poverty reduction , 2012 .

[6]  G. B. Groom,et al.  The integration of field survey and remote sensing for biodiversity assessment: a case study in the tropical forests and wetlands of Sango Bay, Uganda , 1998 .

[7]  T. Daw,et al.  Applying the ecosystem services concept to poverty alleviation: the need to disaggregate human well-being , 2011, Environmental Conservation.

[8]  Gunter Menz,et al.  Mapping small wetlands of Kenya and Tanzania using remote sensing techniques , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[9]  D. Murdiyarso,et al.  Tropical wetlands for climate change adaptation and mitigation: science and policy imperatives with special reference to Indonesia , 2012 .

[10]  P. Moore Biological processes controlling the development of modern peat-forming ecosystems , 1995 .

[11]  I. Prentice,et al.  Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1 , 2010 .

[12]  F. Müller,et al.  Mapping ecosystem service supply, demand and budgets , 2012 .

[13]  J. Nunes,et al.  Combining digital soil mapping and hydrological modeling in a data scarce watershed in north-central Portugal , 2016 .

[14]  R. Boar Responses of a fringing Cyperus papyrus L. swamp to changes in water level , 2006 .

[15]  O. Mutanga,et al.  Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry , 2009 .

[16]  R. Birdsey,et al.  Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities , 2016, Wetlands Ecology and Management.

[17]  B. Diekkrüger,et al.  East African wetland-catchment data base for sustainable wetland management , 2016 .

[18]  P. E. Dik SIMGRO 4.1.2; user's guide , 2004 .

[19]  M. Acreman,et al.  The role of wetlands in the hydrological cycle , 2003 .

[20]  Uganda Environment Mapping a better future: how spatial analysis can benefit wetlands and reduce poverty in Uganda , 2009 .

[21]  F. Kansiime,et al.  Reviewing the carbon cycle dynamics and carbon sequestration potential of Cyperus papyrus L. wetlands in tropical Africa , 2013, Wetlands Ecology and Management.

[22]  J. Verhoeven,et al.  Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands , 2006 .

[23]  Paul H. Whitfield,et al.  Improving Hydrological Predictions in Peatlands , 2009 .

[24]  F. Kansiime,et al.  Assessment of nutrient retention by Natete wetland Kampala, Uganda , 2010 .

[25]  Wossenu Abtew,et al.  Evaporation and Evapotranspiration: Measurements and Estimations , 2012 .

[26]  Andrew P. Whitmore,et al.  Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties , 2010 .

[27]  F. Aires,et al.  Changes in land surface water dynamics since the 1990s and relation to population pressure , 2012 .

[28]  G. Guntenspergen,et al.  Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region , 2013, Ecology and evolution.

[29]  Dirk Eilander,et al.  Predicting the ungauged basin: model validation and realism assessment , 2015, Front. Earth Sci..

[30]  Ralf Seppelt,et al.  Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability , 2015 .

[31]  Thomas Gumbricht,et al.  Mapping of soil properties and land degradation risk in Africa using MODIS reflectance , 2016 .

[32]  Axel Bronstert,et al.  Integrating wetlands and riparian zones in river basin modelling , 2006 .

[33]  Hans-Jörg Vogel,et al.  Modeling Soil Processes: Review, Key Challenges, and New Perspectives , 2016 .

[34]  Leif T. Jensen,et al.  A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments , 1997 .

[35]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[36]  J. Couwenberg,et al.  Investing in nature: Developing ecosystem service markets for peatland restoration , 2014 .

[37]  Garry D. Peterson,et al.  Trade-offs across Space, Time, and Ecosystem Services , 2006 .

[38]  S. Shabala,et al.  Waterlogging signalling and tolerance in plants , 2010 .

[39]  Christopher J. Banks,et al.  Global and regional importance of the tropical peatland carbon pool , 2011 .

[40]  H. Joosten The Global Peatland CO2 Picture: peatland status and drainage related emissions in all countries of the world. , 2009 .

[41]  Qianlai Zhuang,et al.  Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales , 2013, Global change biology.

[42]  P. Shewry,et al.  Papyrus swamp development in the Upemba Basin, Zaïre: studies of population structure in Cyperus papyrus stands , 1979 .

[43]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[44]  Garry D. Peterson,et al.  Agricultural modifications of hydrological flows create ecological surprises. , 2008, Trends in ecology & evolution.

[45]  J. Holden,et al.  Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration , 2004 .

[46]  Jeff Warburton,et al.  Carbon budget for a British upland peat catchment. , 2003, The Science of the total environment.

[47]  Hans Joosten,et al.  Greenhouse gas fluxes from tropical peatlands in south‐east Asia , 2009 .

[48]  E. Paterson,et al.  The effect of elevated CO2 concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential , 1998 .

[49]  S. Page,et al.  Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia , 2008 .

[50]  Mark Mulligan,et al.  WaterWorld: a self-parameterising, physically-based model for application in data-poor but problem-rich environments globally , 2013 .

[51]  N. McDowell,et al.  Numerical Terradynamic Simulation Group 1-2013 A Remotely Sensed Global Terrestrial Drought Severity Index , 2017 .

[52]  P. Döll,et al.  Development and validation of a global database of lakes, reservoirs and wetlands , 2004 .

[53]  Xixi Lu,et al.  Subsidence and carbon loss in drained tropical peatlands , 2012 .

[54]  Eric A. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q 10 , 2006 .

[55]  N. Reynard,et al.  A simple framework for evaluating regional wetland ecohydrological response to climate change with case studies from Great Britain , 2009 .

[56]  Charles E. Kellogg,et al.  Soil Survey Manual , 2017 .

[57]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[58]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[59]  Stanley T. Asah,et al.  Managing the mismatches to provide ecosystem services for human well-being: a conceptual framework for understanding the New Commons , 2014 .

[60]  N. Davidson,et al.  Assessing wetland ecosystem services and poverty interlinkages: a general framework and case study , 2011 .

[61]  J. Couwenberg,et al.  Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability , 2011 .

[62]  Alexander J. Henshaw,et al.  Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services , 2013 .

[63]  Effects of harvesting Cyperus papyrus in undisturbed wetland, Lake Naivasha, Kenya , 2011, Hydrobiologia.

[64]  A. Davidson,et al.  A Methodology to Map Ecosystem Functions to Support Ecosystem Services Assessments , 2013 .

[65]  S. Limin,et al.  Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment , 2014 .

[66]  F. Müller,et al.  Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification , 2014 .

[67]  Robert M. Rees,et al.  First 20 years of DNDC (DeNitrification DeComposition): Model evolution , 2014 .

[68]  MICHAEL B. Jones,et al.  Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya , 1997, Journal of Tropical Ecology.

[69]  Lisa-Maria Rebelo,et al.  Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data , 2015 .

[70]  P. Moore The ecology of peat-forming processes: a review , 1989 .

[71]  J. Holden,et al.  Can carbon offsetting pay for upland ecological restoration? , 2009, The Science of the total environment.

[72]  Rudiyanto,et al.  Estimating distribution of carbon stock in tropical peatland using a combination of an Empirical Peat Depth Model and GIS , 2015 .

[73]  M. McCartney,et al.  Working wetlands: classifying wetland potential for agriculture. , 2005 .

[74]  M. Mendonça-Santos,et al.  Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil , 2010 .

[75]  W. H. Wischmeier,et al.  Predicting rainfall erosion losses : a guide to conservation planning , 1978 .

[76]  J. Couwenberg,et al.  Assessing greenhouse gas emissions from peatlands using vegetation as a proxy , 2011, Hydrobiologia.

[77]  J. Huissteden,et al.  Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils , 2006 .

[78]  D. P. Carrington,et al.  Climate sensitivity to wetlands and wetland vegetation in mid-Holocene North Africa , 2001 .

[79]  Steve Frolking,et al.  A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation , 2010 .

[80]  M. Acreman,et al.  Hydrological science and wetland restoration: some case studies from Europe , 2007 .

[81]  Gary W. Johnson,et al.  A Methodology for Adaptable and Robust Ecosystem Services Assessment , 2014, PloS one.

[82]  J. Huising,et al.  Effects of land cover on ecosystem services in Tanzania: A spatial assessment of soil organic carbon , 2016 .

[83]  Andrew P. Whitmore,et al.  Modification of the RothC model for simulations of soil organic C dynamics in dryland regions , 2013 .

[84]  Darius J. Semmens,et al.  Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona , 2013 .

[85]  K. Rebel,et al.  Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites , 2009 .

[86]  Mark New,et al.  Ensemble forecasting of species distributions. , 2007, Trends in ecology & evolution.

[87]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[88]  S. Frolking,et al.  Carbon accumulation of tropical peatlands over millennia: a modeling approach , 2015, Global change biology.

[89]  R. D. Groot,et al.  Trade-offs and synergies between biodiversity conservation, land use change and ecosystem services , 2013 .

[90]  F. Kansiime,et al.  Carbon and water cycles in tropical papyrus wetlands , 2007, Wetlands Ecology and Management.

[91]  Tim R. Moore,et al.  Modelling and analysis of peatlands as dynamical systems , 2000 .

[92]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[93]  V. Singh,et al.  Mathematical Modeling of Watershed Hydrology , 2002 .

[94]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[95]  K. Schuyt Economic consequences of wetland degradation for local populations in Africa , 2005 .

[96]  Peter G. Ryan,et al.  Recent papyrus swamp habitat loss and conservation implications in western Kenya , 2007, Wetlands Ecology and Management.

[97]  Benjamin L Turner,et al.  Tropical wetlands: A missing link in the global carbon cycle? , 2014, Global biogeochemical cycles.

[98]  L. Rebelo,et al.  Wetlands of Sub-Saharan Africa: distribution and contribution of agriculture to livelihoods , 2010, Wetlands Ecology and Management.

[99]  G. Daily,et al.  Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales , 2009 .

[100]  Stephen Polasky,et al.  Regime shifts and management , 2012 .

[101]  Trade-Offs Between Sprinting and Clinging Ability in Kenyan Chameleons , 1993 .

[102]  N. Davidson How much wetland has the world lost? Long-term and recent trends in global wetland area , 2014 .

[103]  D. Boelter Important physical properties of peat materials , 1968 .

[104]  M. Jackson,et al.  Plant adaptations to anaerobic stress , 1997 .

[105]  D. Rapport,et al.  State of the Environment Report for Canada , 1986 .

[106]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[107]  F. Kansiime,et al.  Agricultural encroachment: implications for carbon sequestration in tropical African wetlands , 2012 .

[108]  Chris D. Evans,et al.  Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes , 2013, Nature.

[109]  H. Tian,et al.  Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis , 2012 .

[110]  D. Naugle,et al.  Vulnerability of Northern Prairie Wetlands to Climate Change , 2005 .

[111]  Kevin L. Erwin Wetlands and global climate change: the role of wetland restoration in a changing world , 2009, Wetlands Ecology and Management.

[112]  C. Howard‐Williams,et al.  The structure and functioning of African swamps , 1985 .

[113]  D. Jenkinson,et al.  RothC-26.3 - A Model for the turnover of carbon in soil , 1996 .

[114]  J. Olden,et al.  Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management , 2015 .

[115]  R. Delaune,et al.  Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning , 2012, Biology.

[116]  S. A. Loiselle,et al.  Functioning and dynamics of wetland vegetation of Lake Victoria: an overview , 2007, Wetlands Ecology and Management.

[117]  S. Cosentino,et al.  Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content , 2011 .

[118]  Stephen R. Carpenter,et al.  State of the world's freshwater ecosystems: physical, chemical, and biological changes. , 2011 .

[119]  MICHAEL B. Jones,et al.  The potential use of papyrus (Cyperus papyrus L.) wetlands as a source of biomass energy for sub‐Saharan Africa , 2018 .

[120]  M. Dondini,et al.  Evaluation of the ECOSSE model for simulating soil carbon under short rotation forestry energy crops in Britain , 2015 .

[121]  Pete Smith,et al.  Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils , 2011 .

[122]  A. Funk,et al.  A characterization of the drivers, pressures, ecosystem functions and services of Namatala wetland, Uganda , 2013 .

[123]  D. Richardson,et al.  Mapping ecosystem services for planning and management , 2008 .

[124]  Carl C. Trettin,et al.  Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland Ecosystems , 2004 .

[125]  Gunter Menz,et al.  Classification, Characterisation, and Use of Small Wetlands in East Africa , 2011, Wetlands.

[126]  Anders Wörman,et al.  Hydrological modelling of Ethiopian catchments using limited data , 2009 .

[127]  S. Andersson,et al.  Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus , 2001 .

[128]  Li Zhang,et al.  Wetlands, carbon, and climate change , 2013, Landscape Ecology.

[129]  M. Kirschbaum,et al.  The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage , 1995 .

[130]  R. W. Skaggs,et al.  DRAINMOD: Model Use, Calibration, and Validation , 2012 .

[131]  S. Humphries,et al.  Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland , 2002, Hydrobiologia.

[132]  W. M. J. Luxemburg,et al.  A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin , 2015 .

[133]  F. Müller,et al.  The indicator side of ecosystem services , 2012 .

[134]  M. Lomas,et al.  The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands , 2010 .

[135]  Rosemary W.H. Carroll,et al.  Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate , 2010 .

[136]  D. Lai Methane dynamics in northern peatlands: a review. , 2009 .

[137]  Garry D. Peterson,et al.  Understanding relationships among multiple ecosystem services. , 2009, Ecology letters.

[138]  Budiman Minasny,et al.  Digital soil mapping: A brief history and some lessons , 2016 .

[139]  Kari L Vigerstol,et al.  A comparison of tools for modeling freshwater ecosystem services. , 2011, Journal of environmental management.

[140]  R. W. Skaggs,et al.  A water management model for shallow water table soils , 1978 .

[141]  Torben O. Sonnenborg,et al.  Impact of climate and land use change on the hydrology of a large‐scale agricultural catchment , 2009 .

[142]  Changsheng Li,et al.  An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems , 2002 .

[143]  S. Polasky,et al.  Getting the measure of ecosystem services: a social–ecological approach , 2013 .

[144]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes , 2009 .

[145]  Venkat Lakshmi,et al.  Predictions in ungauged basins as a catalyst for multidisciplinary hydrology , 2004 .

[146]  Mathieu Marmion,et al.  Evaluation of consensus methods in predictive species distribution modelling , 2009 .

[147]  A Review of Carbon Dynamics and Sequestration in Wetlands , 2009 .

[148]  J. Drexler,et al.  The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA , 2009, Wetlands.