Mutational heterogeneity in cancer and the search for new cancer genes

[1]  A. McKenna,et al.  Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity , 2013, Nature Genetics.

[2]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[3]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[4]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[5]  Paz Polak,et al.  Differential relationship of DNA replication timing to different forms of human mutation and variation. , 2012, American journal of human genetics.

[6]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[7]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[8]  Kristian Cibulskis,et al.  A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. , 2012, The Journal of clinical investigation.

[9]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[10]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[11]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[12]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[13]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[14]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[15]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[16]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[17]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[18]  M. A. Arrabal-Polo,et al.  Meta-Analysis of Studies Analyzing the Role of Human Papillomavirus in the Development of Bladder Carcinoma , 2012, Korean journal of urology.

[19]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[20]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[21]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[22]  E. Giné,et al.  Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia , 2011, Nature Genetics.

[23]  A. Sivachenko,et al.  SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. , 2011, The New England journal of medicine.

[24]  Alan Hodgkinson,et al.  Variation in the mutation rate across mammalian genomes , 2011, Nature Reviews Genetics.

[25]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[26]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[27]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[28]  A. McKenna,et al.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma , 2011, Science.

[29]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[30]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[31]  Richard Simon,et al.  Identifying cancer driver genes in tumor genome sequencing studies , 2011, Bioinform..

[32]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[33]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[34]  Jonathan W. Pillow,et al.  POSTER PRESENTATION Open Access , 2013 .

[35]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[36]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[37]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[38]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[39]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[40]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[41]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[42]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[43]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[44]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[45]  Brian H. Dunford-Shore,et al.  Somatic mutations affect key pathways in lung adenocarcinoma , 2008, Nature.

[46]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[47]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[48]  Tsutomu Ohta,et al.  Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy , 2008, Proceedings of the National Academy of Sciences.

[49]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[50]  S. Wain-Hobson,et al.  Evidence for Editing of Human Papillomavirus DNA by APOBEC3 in Benign and Precancerous Lesions , 2008, Science.

[51]  L. Mullenders,et al.  Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects , 2008, Cell Research.

[52]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[53]  Guy Cavet,et al.  Comment on "The Consensus Coding Sequences of Human Breast and Colorectal Cancers" , 2007, Science.

[54]  G. Parmigiani,et al.  A multidimensional analysis of genes mutated in breast and colorectal cancers. , 2007, Genome research.

[55]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[56]  G. Parmigiani,et al.  The Consensus Coding Sequences of Human Breast and Colorectal Cancers , 2006, Science.

[57]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[58]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[60]  J. Peto,et al.  Human papillomavirus is a necessary cause of invasive cervical cancer worldwide , 1999, The Journal of pathology.

[61]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[62]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .