Algorithmic Aspects of Elliptic Curves

The burgeoning field of computational number theory asks for practical algorithms to compute solutions to arithmetic problems. For example, the Mordell–Weil theorem (VIII.6.7) says that the group of rational points on an elliptic curve is finitely generated, and although we still lack an effective algorithm that is guaranteed to find a set of generators, there are algorithms that often work well in practice. Similarly, Siegel’s theorem (IX.3.2.1) says that an elliptic curve has only finitely many S-integral points, but it took 50 years from Siegel’s proof of finiteness to Baker’s theorem giving an effective bound for the height of the largest solution (IX §5). And Baker’s theorem is only the beginning of the story, since it leads to estimates that, although effective, are not practical without the introduction of significant additional ideas.

[1]  Jan-Hendrik Evertse,et al.  On equations inS-units and the Thue-Mahler equation , 1984 .

[2]  Edlyn Teske,et al.  Speeding Up Pollard's Rho Method for Computing Discrete Logarithms , 1998, ANTS.

[3]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[4]  J. Cassels,et al.  Diophantine Equations with Special Reference To Elliptic Curves , 1966 .

[5]  On the rank of an elliptic surface , 1998 .

[6]  Ernst S. Selmer,et al.  A conjecture concerning rational points on cubic curves , 1954 .

[7]  André Weil,et al.  Jacobi sums as “Grössencharaktere” , 1952 .

[8]  O. Neumann Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. II , 1971 .

[9]  G. Frey Links between solutions of A−B=C and elliptic curves , 1989 .

[10]  D. Kubert Universal Bounds on the Torsion of Elliptic Curves , 1976 .

[11]  Takeshi Saito,et al.  Conductor, discriminant, and the Noether formula of arithmetic surfaces , 1988 .

[12]  Douglas Ulmer Elliptic curves with large rank over function fields , 2001, math/0109163.

[13]  Edward F. Schaefer,et al.  How to do a p-descent on an elliptic curve , 2003 .

[14]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[15]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[16]  Atsuko Miyaji,et al.  Characterization of Elliptic Curve Traces under FR-Reduction , 2000, ICISC.

[17]  Michael Laska Elliptic curves over number fields with prescribed reduction type , 1983 .

[18]  Joseph H. Silverman,et al.  A quantitative version of Siegel's theorem: integral points on elliptic curves and Catalan curves. , 1987 .

[19]  Par Goro Shimura Correspondances modulaires et les fonctions ζ de courbes algebriques , 1958 .

[20]  E. Victor Flynn,et al.  Descent via isogeny on elliptic curves with large rational torsion subgroups , 2008, J. Symb. Comput..

[21]  Joseph H. Silverman,et al.  Heights and the specialization map for families of abelian varieties. , 1983 .

[22]  J. W. S. Cassels,et al.  A note on the division values of ℘(u) , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Attila Pethő,et al.  Computing integral points on elliptic curves , 1994 .

[24]  T. Apostol Introduction to analytic number theory , 1976 .

[25]  A. Ogg,et al.  ELLIPTIC CURVES AND WILD RAMIFICATION. , 1967 .

[26]  D. Masser Elliptic Functions and Transcendence , 1975 .

[27]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[28]  J. Tate,et al.  Algebraic cycles and poles of zeta functions , 1965 .

[29]  R. C. Mason Norm form equations I , 1986 .

[30]  Joe Harris,et al.  Definitions of Dimension and Elementary Examples , 1992 .

[31]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[32]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.

[33]  Alan F. Beardon,et al.  Iteration of Rational Functions , 1991 .

[34]  P. Deligne La conjecture de Weil. I , 1974 .

[35]  D. W. Masser,et al.  Vanishing sums in function fields , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  J. Tate,et al.  Variation of the Canonical Height of a Point Depending on a Parameter , 1983 .

[37]  J. Cassels,et al.  Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer. , 1965 .

[38]  G. L. Dirichlet Ueber den biquadratischen Character der Zahl "Zwei". , 1860 .

[39]  Nicole Arthaud,et al.  On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication. I , 1978 .

[40]  Mihir Bellare,et al.  The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES , 2001, CT-RSA.

[41]  Horst G. Zimmer,et al.  On the difference of the Weil height and the Néron-Tate height , 1976 .

[42]  W. W. Stothers,et al.  POLYNOMIAL IDENTITIES AND HAUPTMODULN , 1981 .

[43]  K. Nagao ℚ(T)-rank of elliptic curves and certain limit coming from the local points , 1997 .

[44]  R. Greenberg On the Birch and Swinnerton-Dyer conjecture , 1983 .

[45]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[46]  G. Wüstholz,et al.  Recent progress in transcendence theory , 1984 .

[47]  Michael Harris,et al.  Automorphy for some l-adic lifts of automorphic mod l Galois representations , 2008 .

[48]  C. Clemens A Scrapbook of Complex Curve Theory: Second Edition , 2002 .

[49]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[50]  Edlyn Teske,et al.  A space efficient algorithm for group structure computation , 1998, Math. Comput..

[51]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[52]  Loren D. Olson Torsion points on elliptic curves with given j-invariant , 1975 .

[53]  Jean-Pierre Serre,et al.  Good reduction of abelian varieties , 1968 .

[54]  André Néron,et al.  Modèles minimaux des variétés abéliennes sur les corps locaux et globaux , 1964 .

[55]  André Néron,et al.  Problèmes arithmétique et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps , 1952 .

[56]  Barry Mazur,et al.  Modular curves and the eisenstein ideal , 1977 .

[57]  A. Ogg Abelian curves of 2-power conductor , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  S. Lichtenbaum,et al.  THE PERIOD-INDEX PROBLEM FOR ELLIPTIC CURVES. , 1968 .

[59]  J. W. S. Cassels,et al.  arithmetic on curves of genus 1 : iii. the tate‐Šafarevič and selmer groups , 1962 .

[60]  Ju. Manin,et al.  CYCLOTOMIC FIELDS AND MODULAR CURVES , 1971 .

[61]  André Weil,et al.  Dirichlet Series and Automorphic Forms , 1971 .

[62]  J. Cassels,et al.  Arithmetic on Curves of Genus 1. IV. Proof of the Hauptvermutung. , 1962 .

[63]  Gerd Faltings,et al.  Finiteness Theorems for Abelian Varieties over Number Fields , 1986 .

[64]  J. Tate,et al.  The arithmetic of elliptic curves , 1974 .

[65]  Kenneth A. Ribet,et al.  On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .

[66]  G. Frey Elliptic curves and solutions of A-B=C , 1987 .

[67]  B. J. Birch,et al.  How the Number of Points of An Elliptic Curve Over a Fixed Prime Field Varies , 1968 .

[68]  B. Mazur,et al.  Rational isogenies of prime degree , 1978 .

[69]  Ebru Bekyel The density of elliptic curves having a global minimal Weierstrass equation , 2004 .

[70]  R. Taylor,et al.  On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.

[71]  N. Katz,et al.  Arithmetic Moduli of Elliptic Curves. (AM-108) , 1985 .

[72]  J. Cassels,et al.  Arithmetic on Curves of Genus 1 (V). Two Counter-Examples , 1963 .

[73]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[74]  D. Rohrlich,et al.  OnL-functions of elliptic curves and cyclotomic towers , 1984 .

[75]  Joseph H. Silverman,et al.  Wieferich's criterion and the abc-conjecture , 1988 .

[76]  André Weil,et al.  Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , 1967 .

[77]  Tanja Lange,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .

[78]  Hans Reichardt,et al.  Einige im Kleinen überall lösbare, im Großen unlösbare diophantische Gleichungen. , 1942 .

[79]  David A. Cox The Arithmetic-Geometric Mean of Gauss , 2004 .

[80]  I. Shafarevich Basic algebraic geometry , 1974 .

[81]  H. Carayol Sur les représentations Galoisiennes modulo $\ell$ attachées aux formes modulaires , 1989 .

[82]  David Masser,et al.  Fields of large transcendence degree generated by values of elliptic functions , 1983 .

[83]  Paul Vojta Siegel's theorem in the compact case , 1991 .

[84]  Karl Rubin,et al.  Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer , 1981 .

[85]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[86]  Ramarathnam Venkatesan,et al.  Non-degeneracy of Pollard Rho Collisions , 2008, ArXiv.

[87]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[88]  L. J. Mordell THE DIOPHANTINE EQUATION x4+my4 =z2 , 1967 .

[89]  A. Neron,et al.  Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .

[90]  Yuval Peres,et al.  A Birthday Paradox for Markov Chains, with an Optimal Bound for Collision in the Pollard Rho Algorithm for Discrete Logarithm , 2008, ANTS.

[91]  J. Cassels LMSST: 24 Lectures on Elliptic Curves , 1991 .

[92]  S. Kamienny,et al.  Torsion points on elliptic curves andq-coefficients of modular forms , 1992 .

[93]  L. V. Danilov Diophantine equation x3−y2=k and Hall's conjecture , 1982 .

[94]  Nigel P. Smart,et al.  The Discrete Logarithm Problem on Elliptic Curves of Trace One , 1999, Journal of Cryptology.

[95]  Ted Chinburg,et al.  An Introduction to Arakelov Intersection Theory , 1986 .

[96]  Ramarathnam Venkatesan,et al.  Spectral Analysis of Pollard Rho Collisions , 2006, ANTS.

[97]  H. Swinnerton-Dyer,et al.  Ellitpic curves and modular functions , 1975 .

[98]  N. Stephens,et al.  The diophantine equation X3 + Y3 = DZ3 and the conjectures of Birch and Swinnerton-Dyer. , 1968 .

[99]  H. Edwards A normal form for elliptic curves , 2007 .

[100]  Jean-Pierre Serre Géométrie algébrique et géométrie analytique , 1956 .

[101]  Don Zagier,et al.  Large Integral Points on Elliptic Curves , 1987 .

[102]  P. Voutier An Upper Bound for the Size of Integral Solutions to Ym=ƒ(X) , 1995 .

[103]  Y. Bugeaud Bounds for the solutions of superelliptic equations , 1997, Compositio Mathematica.

[104]  Jean-Pierre Serre,et al.  Cohomology of group extensions , 1953 .

[105]  David Mandell Freeman,et al.  Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.

[106]  N. Tzanakis,et al.  Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms , 1994 .

[107]  Antoine Joux A One Round Protocol for Tripartite Diffie-Hellman , 2000, ANTS.

[108]  A. Ogg Abelian curves of small conductor. , 1967 .

[109]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[110]  Ju. Manin,et al.  THE p-TORSION OF ELLIPTIC CURVES IS UNIFORMLY BOUNDED , 1969 .

[111]  Michael Laska,et al.  An algorithm for finding a minimal Weierstrass equation for an elliptic curve , 1982 .

[112]  R. Gross A note on Roth's Theorem , 1990 .

[113]  Joseph H. Silverman,et al.  Lower bound for the canonical height on elliptic curves , 1981 .

[114]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[115]  Nigel P. Smart,et al.  S-integral points on elliptic curves , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[116]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[117]  B. Birch,et al.  Modular Functions of One Variable IV , 1975 .

[118]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[119]  Ernst S. Selmer,et al.  The diophantine equationax3+by3+cz3=0. Completion of the tables , 1954 .

[120]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[121]  Joseph H. Silverman,et al.  Divisibility of the Specialization Map for Families of Elliptic Curves , 1985 .

[122]  Paul Vojta,et al.  A Higher Dimensional Mordell Conjecture , 1986 .

[123]  José Felipe Voloch,et al.  Diagonal equations over function fields , 1985 .

[124]  M. Eichler,et al.  Quaternäre quadratische Formen und die Riemannsche Vermutung fÜr die Kongruenzzetafunktion , 1954 .

[125]  T. Shioda,et al.  An Explicit Algorithm for Computing the Picard Number of Certain Algebraic Surfaces , 1986 .

[126]  Don Zagier,et al.  On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3 , 1985 .

[127]  Bernard Dwork,et al.  On the Rationality of the Zeta Function of an Algebraic Variety , 1960 .

[128]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[129]  A. Ogg,et al.  Modular forms and Dirichlet series , 1969 .

[130]  Joseph H. Silverman,et al.  The difference between the Weil height and the canonical height on elliptic curves , 1990 .

[131]  J. Silverman Integer Points on Curves of Genus 1 , 1983 .

[132]  W. J. Blundon,et al.  Numerical solutions of the Diophantine equation , 1966 .

[133]  Jean-François Mestre Courbes elliptiques et formules explicites , 1982 .

[134]  R. Balasubramanian,et al.  The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.

[135]  Armand Brumer,et al.  The rank of elliptic curves , 1977 .

[136]  S. Fermigier Une courbe elliptique définie sur ℚ de rang ≥ 22 , 1997 .

[137]  G. Wüstholz,et al.  Isogeny estimates for abelian varieties, and finiteness theorems , 1993 .

[138]  Gerd Faltings,et al.  Calculus on arithmetic surfaces , 1984 .

[139]  Don Zagier,et al.  Heegner points and derivatives ofL-series , 1986 .

[140]  J. Coates,et al.  Integer points on curves of genus 1 , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[141]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[142]  Edlyn Teske Square-root algorithms for the discrete logarithm problem (a survey) , 2001 .

[143]  G. Shimura V. The Zeta Function of an Abelian Variety with Complex Multiplication , 1971 .

[144]  Bennett Setzer Elliptic Curves of Prime Conductor , 1975 .

[145]  Jean-Pierre Serre,et al.  Quelques applications du théorème de densité de Chebotarev , 1981 .

[146]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[147]  Stephen Hoel Schanuel Heights in number fields , 1979 .

[148]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[149]  A. Weil Numbers of solutions of equations in finite fields , 1949 .

[150]  S. David Minorations de formes linéaires de logarithmes elliptiques , 1995 .

[151]  S. Lang,et al.  Conjectured Diophantine Estimates on Elliptic Curves , 1983 .

[152]  Igor E. Shparlinski,et al.  Elliptic divisibility sequences , 2003 .

[153]  On Lattès Maps , 2006 .

[154]  J. Tate,et al.  Algorithm for determining the type of a singular fiber in an elliptic pencil , 1975 .

[155]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[156]  D V Chudnovsky,et al.  Padé approximations and diophantine geometry. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Katherine E. Stange The Tate Pairing Via Elliptic Nets , 2007, Pairing.

[158]  W. Kohnen,et al.  Heegner points and derivatives ofL-series. II , 1987 .

[159]  R. Fueter,et al.  Ueber kubische diophantische Gleichungen , 1930 .

[160]  Jean-Pierre Serre Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ , 1987 .

[161]  R. C. Mason The hyperelliptic equation over function fields , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[162]  S. Lang,et al.  Principal Homogeneous Spaces Over Abelian Varieties , 1958 .

[163]  Jan-Hendrik Evertse,et al.  Uniform bounds for the number of solutions to Yn = f(X) , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[164]  S-ganze Punkte auf elliptischen Kurven , 2009 .

[165]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[166]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .

[167]  J. Tate,et al.  DUALITY THEOREMS IN GALOIS COHOMOLOGY OVER NUMBER FIELDS , 2010 .

[168]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[169]  Takakazu Satoh,et al.  Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves , 1998 .

[170]  Loïc Merel,et al.  Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .

[171]  Tanja Lange,et al.  Faster Addition and Doubling on Elliptic Curves , 2007, ASIACRYPT.

[172]  Sarah Meiklejohn,et al.  Review of an introduction to mathematical cryptography by Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman Springer-Verlag, 2008 , 2010, SIGA.

[173]  G. Wüstholz,et al.  Estimating isogenies on elliptic curves , 1990 .

[174]  J Igusa,et al.  CLASS NUMBER OF A DEFINITE QUATERNION WITH PRIM DISCRIMINANT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[175]  J. Silverman,et al.  S-INTEGER POINTS ON ELLIPTIC CURVES , 1995 .

[176]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .

[177]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[178]  R. J. Walker Algebraic curves , 1950 .

[179]  L. Mordell,et al.  Diophantine equations , 1969 .

[180]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[181]  H. Swinnerton-Dyer,et al.  Notes on elliptic curves. II. , 1963 .

[182]  K. Mahler,et al.  On the Lattice-Points on Curves of Genus , 1935 .

[183]  Karl Rubin,et al.  Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication , 1987 .

[184]  J. W. S. Cassels,et al.  On the equation , 1984 .

[185]  François Morain Building Elliptic Curves Modulo Large Primes , 1991, EUROCRYPT.

[186]  Morgan Ward,et al.  Memoir on Elliptic Divisibility Sequences , 1948 .

[187]  J. Coates,et al.  Construction of rational functions on a curve , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[188]  G. Wüstholz Multiplicity estimates on group varieties , 1989 .

[189]  M. Brown,et al.  Note On Supersingular Primes of Elliptic Curves Over Q , 1988 .

[190]  Three constructions of rational points onY2=X3±NX , 1992 .

[191]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[192]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[193]  Katherine E. Stange Elliptic nets and elliptic curves , 2007, 0710.1316.

[194]  Joseph H. Silverman The S -unit equation over function fields , 1984 .

[195]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[196]  J. Pollard,et al.  Monte Carlo methods for index computation () , 1978 .

[197]  Goro Shimura On Elliptic Curves with Complex Multiplication as Factors of the Jacobians of Modular Function Fields , 1971 .

[198]  D. Lewis,et al.  On the representation of integers by binary forms , 1961 .

[199]  Joseph H. Silverman,et al.  Weierstrass equations and the minimal discriminant of an elliptic curve , 1984 .

[200]  N. Elkies Elliptic and modular curves over finite fields and related computational issues , 1997 .

[201]  Gerald J. Janusz,et al.  Algebraic Number Fields , 2005 .

[202]  Richard Taylor,et al.  A family of Calabi-Yau varieties and potential automorphy , 2010 .

[203]  A N Paršin,et al.  ALGEBRAIC CURVES OVER FUNCTION FIELDS. I , 1968 .

[204]  Andreas Enge,et al.  Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields , 2004, Journal of Cryptology.

[205]  J. Cremona,et al.  Height difference bounds for elliptic curves over number fields , 2006 .

[206]  D. W. Masser Specializations of finitely generated subgroups of abelian varieties , 1989 .

[207]  Joseph H. Silverman,et al.  The canonical height and integral points on elliptic curves , 1988 .

[208]  W. Narkiewicz Global Class-Field Theory , 1996 .

[209]  H. M. Stark,et al.  Effective estimates of solutions of some diophantine equations , 1973 .

[210]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[211]  J. Manin,et al.  THE HASSE-WITT MATRIX OF AN ALGEBRAIC CURVE , 1996 .

[212]  R. Schoof Journal de Theorie des Nombres de Bordeaux 7 (1995), 219{254 , 2022 .

[213]  M. A Kenku On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class , 1982 .

[214]  Joseph H. Silverman,et al.  Arithmetic distance functions and height functions in diophantine geometry , 1987 .

[215]  Richard G.E. Pinch Elliptic curves with good reduction away from 2: II , 1984 .

[216]  Joseph H. Silverman,et al.  Computing heights on elliptic curves , 1988 .

[217]  Noam D. Elkies,et al.  The existence of infinitely many supersingular primes for every elliptic curve over ℚ , 1987 .

[218]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[219]  Alain Robert Elliptic Curves: Notes from Postgraduate Lectures Given in Lausanne 1971/72 , 1973 .

[220]  P. Erdös,et al.  On a problem of Oppenheim concerning “factorisatio numerorum” , 1983 .

[221]  Bennett Setzer,et al.  Elliptic curves over complex quadratic fields , 1978 .

[222]  Edward F. Schaefer,et al.  Computing the p-Selmer group of an elliptic curve , 2000 .

[223]  Jean-Pierre Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .

[224]  Ernst S. Selmer,et al.  The diophantine equationax3+by3+cz3=0. , 1951 .

[225]  Igor A. Semaev,et al.  Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p , 1998, Math. Comput..

[226]  G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .

[227]  Karl Rubin,et al.  The “main conjectures” of iwasawa theory for imaginary quadratic fields , 1988 .

[228]  Andre Weil On Algebraic Groups and Homogeneous Spaces , 1955 .