Computability on continuous, lower semi-continuous and upper semi-continuous real functions
暂无分享,去创建一个
[1] Douglas S. Bridges. Review: M. B. Pour-El and J. I. Richards, Computability in analysis and physics , 1991 .
[2] M. Rosenlicht. Introduction to Analysis , 1970 .
[3] Christoph Kreitz,et al. Theory of Representations , 1985, Theor. Comput. Sci..
[4] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[5] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[6] Klaus Weihrauch,et al. Type 2 Recursion Theory , 1985, Theor. Comput. Sci..
[7] R. Baire. Sur les séries à termes continus et tous de même signe , 1904 .
[8] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.
[9] W. Rudin. Real and complex analysis , 1968 .
[10] Panos M. Pardalos,et al. Introduction to Global Optimization , 2000, Introduction to Global Optimization.
[11] Hing Tong,et al. Some characterizations of normal and perfectly normal spaces , 1952 .
[12] Christoph Kreitz,et al. Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..
[13] Christoph Kreitz,et al. Compactness in constructive analysis revisited , 1987, Ann. Pure Appl. Log..
[14] Klaus Weihrauch. A Foundation for Computable Analysis , 1997, SOFSEM.
[15] H. R. Strong. Algebraically generalized recursive function theory , 1968 .
[16] Pascal Caron,et al. Natural Numberings and Generalized Computability. , 1980 .
[17] Anil Nerode,et al. Effective Content of the Calculus of Variations I: Semi-Continuity and the Chattering Lemma , 1996, Ann. Pure Appl. Log..