Reflection length with two parameters in the asymptotic representation theory of type B/C and applications

We introduce a two-parameter function φq+,q− on the infinite hyperoctahedral group, which is a bivariate refinement of the reflection length. We show that this signed reflection function φq+,q− is positive definite if and only if it is an extreme character of the infinite hyperoctahedral group and we classify the corresponding set of parameters q+, q−. We construct the corresponding representations through a natural action of the hyperoctahedral group B(n) on the tensor product of n copies of a vector space, which gives a two-parameter analog of the classical construction of Schur–Weyl. We apply our classification to construct a cyclic Fock space of type B generalizing the oneparameter construction in type A found previously by Bożejko and Guta. We also construct a new Gaussian operator acting on the cyclic Fock space of type B and we relate its moments with the Askey–Wimp–Kerov distribution by using the notion of cycles on pair-partitions, which we introduce here. Finally, we explain how to solve the analogous problem for the Coxeter groups of type D by using our main result.

[1]  B. Baumeister,et al.  On the Hurwitz action in finite Coxeter groups , 2015, 1512.04764.

[2]  Finite complex reflection arrangements are $K(\pi,1)$ , 2006, math/0610777.

[3]  U. Haagerup,et al.  Multipliers of the Fourier Algebras of Some Simple Lie Groups and Their Discrete Subgroups , 1985 .

[4]  Bounded linear operators between C^*-algebras , 1993, math/9302214.

[5]  A. Hurwitz Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten , 1891 .

[6]  Grigori Olshanski,et al.  Kirillov's Seminar on Representation Theory , 1997 .

[7]  A. Hora,et al.  Quantum Probability and Spectral Analysis of Graphs , 2007 .

[8]  U. Haagerup An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .

[9]  M. Gut¸ă,et al.  Functors of White Noise Associated to Characters of the Infinite Symmetric Group , 2002 .

[10]  Takahiro Hasebe,et al.  Fock space associated to Coxeter groups of type B , 2014, 1411.7997.

[11]  R. Speicher,et al.  Interpolations between bosonic and fermionic relations given by generalized brownian motions , 1996 .

[12]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[13]  Luigi Accardi,et al.  Interacting Fock Spaces and Gaussianization of Probability Measures , 1998 .

[14]  R. Szwarc,et al.  Algebraic length and Poincaré series on reflection groups with applications to representations theory , 2003 .

[15]  Andrei Okounkov,et al.  On representations of the infinite symmetric group , 1998, math/9803037.

[16]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[17]  R. Speicher,et al.  The normal distribution is -infinitely divisible , 2009, 0910.4263.

[18]  Mathias Lepoutre,et al.  Blossoming bijection for higher-genus maps , 2017, J. Comb. Theory, Ser. A.

[19]  Mathematisch Instituut Functors of White Noise Associated to Characters of the Infinite Symmetric Group , 2002 .

[20]  Takahiro Hasebe,et al.  Noncommutative probability of type D , 2016, 1609.01049.

[21]  Maciej Dolkega,et al.  Blossoming bijection for bipartite pointed maps and parametric rationality of general maps on any surface , 2020, 2002.07238.

[22]  Stéphane Poirier Cycle type and descent set in wreath products , 1998, Discret. Math..

[23]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[24]  R. Askey,et al.  Associated Laguerre and Hermite polynomials , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  D. Bessis Finite complex reection arrangements are K(; 1) , 2015 .

[26]  E. Thoma Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe , 1964 .

[27]  S. Thorbjørnsen,et al.  The normal distribution is freely selfdecomposable , 2017, 1701.00409.

[28]  Éric Fusy,et al.  A simple model of trees for unicellular maps , 2012, J. Comb. Theory, Ser. A.

[29]  W. Mlotkowski,et al.  Positive Definite Functions on Coxeter Groups with Applications to Operator Spaces and Noncommutative Probability , 2017, 1704.06845.

[30]  Gérard Viennot,et al.  A combinatorial theory for general orthogonal polynomials with extensions and applications , 1985 .

[31]  A. Kerber Representations of permutation groups , 1975 .

[32]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[33]  S. R. Gal On Normal Subgroups of Coxeter Groups Generated by Standard Parabolic Subgroups , 2005 .

[34]  S. Kerov,et al.  Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis , 2003 .

[35]  Maciej Dolega,et al.  A bijection for rooted maps on general surfaces , 2015, J. Comb. Theory, Ser. A.

[36]  E. Looijenga The complement of the bifurcation variety of a simple singularity , 1974 .

[37]  G. Olshanski,et al.  Representations of the Infinite Symmetric Group , 2016 .

[38]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[39]  Dan Drake,et al.  The combinatorics of associated Hermite polynomials , 2007, Eur. J. Comb..