Rare variants in γ‐aminobutyric acid type A receptor genes in rolandic epilepsy and related syndromes

To test whether mutations in γ‐aminobutyric acid type A receptor (GABAA‐R) subunit genes contribute to the etiology of rolandic epilepsy (RE) or its atypical variants (ARE).

[1]  C. Gieger,et al.  16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. , 2014, Human molecular genetics.

[2]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[3]  R. Macdonald,et al.  GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G) , 2014, Neurobiology of Disease.

[4]  R. Macdonald,et al.  Three epilepsy-associated GABRG2 missense mutations at the γ+/β− interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents , 2014, Neurobiology of Disease.

[5]  S. Noachtar,et al.  Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy , 2014, Neurobiology of Disease.

[6]  J. Meier,et al.  Palmitoylation of Gephyrin Controls Receptor Clustering and Plasticity of GABAergic Synapses , 2014, PLoS biology.

[7]  J. Meier,et al.  Presynaptic mechanisms of neuronal plasticity and their role in epilepsy , 2014, Front. Cell. Neurosci..

[8]  A. R. Aricescu,et al.  Crystal structure of a human GABAA receptor , 2014, Nature.

[9]  G. Schwarz,et al.  Neuronal Nitric Oxide Synthase-Dependent S-Nitrosylation of Gephyrin Regulates Gephyrin Clustering at GABAergic Synapses , 2014, The Journal of Neuroscience.

[10]  Holger Lerche,et al.  DEPDC5 mutations in genetic focal epilepsies of childhood , 2014, Annals of neurology.

[11]  R. Macdonald,et al.  A Novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended phenotypes , 2014, Neurobiology of Disease.

[12]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[13]  T. Dugladze,et al.  Changes in neural network homeostasis trigger neuropsychiatric symptoms. , 2014, The Journal of clinical investigation.

[14]  Holger Lerche,et al.  RBFOX1 and RBFOX3 Mutations in Rolandic Epilepsy , 2013, PloS one.

[15]  U. Stephani,et al.  Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes , 2013, Nature Genetics.

[16]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[17]  Anne de Saint Martin,et al.  GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction , 2013, Nature Genetics.

[18]  J. Shendure,et al.  GRIN2A mutations cause epilepsy-aphasia spectrum disorders , 2013, Nature Genetics.

[19]  Ethan M. Goldberg,et al.  Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction , 2013, Nature Reviews Neuroscience.

[20]  C. Reid,et al.  Multiple molecular mechanisms for a single GABAA mutation in epilepsy , 2013, Neurology.

[21]  H. Mefford,et al.  Exon‐disrupting deletions of NRXN1 in idiopathic generalized epilepsy , 2013, Epilepsia.

[22]  Holger Lerche,et al.  Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy , 2013, Epilepsia.

[23]  De novo mutations in epileptic encephalopathies , 2013 .

[24]  T. Fuchs,et al.  GABAergic Control of Critical Developmental Periods for Anxiety- and Depression-Related Behavior in Mice , 2012, PloS one.

[25]  R. Guerrini,et al.  Benign childhood focal epilepsies , 2012, Epilepsia.

[26]  Leasha M. Lillywhite,et al.  Clinical genetic studies in benign childhood epilepsy with centrotemporal spikes , 2012, Epilepsia.

[27]  R. Macdonald,et al.  GABAA Receptor Subunit Mutations and Genetic Epilepsies , 2012 .

[28]  M. Arfan Ikram,et al.  The Rotterdam Study: 2012 objectives and design update , 2011, European journal of epidemiology.

[29]  A. Fattal-Valevski,et al.  The prevalence of atypical presentations and comorbidities of benign childhood epilepsy with centrotemporal spikes , 2011, Epilepsia.

[30]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[31]  B Luscher,et al.  The GABAergic deficit hypothesis of major depressive disorder , 2011, Molecular Psychiatry.

[32]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[33]  C. Baker,et al.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. , 2010, Brain : a journal of neurology.

[34]  N. Fejerman Atypical rolandic epilepsy , 2009, Epilepsia.

[35]  Lisa J Strug,et al.  Attention impairment in rolandic epilepsy: Systematic review , 2008, Epilepsia.

[36]  M. T. Medina,et al.  Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. , 2008, American journal of human genetics.

[37]  Aristea S Galanopoulou,et al.  GABAA Receptors in Normal Development and Seizures: Friends or Foes? , 2008, Current neuropharmacology.

[38]  G. Tremont,et al.  High Risk of Reading Disability and Speech Sound Disorder in Rolandic Epilepsy Families: Case–Control Study , 2007, Epilepsia.

[39]  C. Keller,et al.  GODZ-Mediated Palmitoylation of GABAA Receptors Is Required for Normal Assembly and Function of GABAergic Inhibitory Synapses , 2006, The Journal of Neuroscience.

[40]  G. Gobbi,et al.  The Spectrum of Idiopathic Rolandic Epilepsy Syndromes and Idiopathic Occipital Epilepsies: From the Benign to the Disabling , 2006, Epilepsia.

[41]  L. Lagae,et al.  A novel GABRG2 mutation associated with febrile seizures , 2006, Neurology.

[42]  R. Ottman Analysis of Genetically Complex Epilepsies , 2005, Epilepsia.

[43]  P. Haydon,et al.  Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[44]  J. Loturco,et al.  Disruption of postsynaptic GABAA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons , 2005, Journal of neurochemistry.

[45]  Hillel Adesnik,et al.  Identification of PSD-95 Palmitoylating Enzymes , 2004, Neuron.

[46]  R. Macdonald,et al.  The GABAA Receptor γ2 Subunit R43Q Mutation Linked to Childhood Absence Epilepsy and Febrile Seizures Causes Retention of α1β2γ2S Receptors in the Endoplasmic Reticulum , 2004, The Journal of Neuroscience.

[47]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[48]  Steven Petrou,et al.  GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. , 2004, Human molecular genetics.

[49]  S. Moss,et al.  Palmitoylation regulates the clustering and cell surface stability of GABAA receptors , 2004, Molecular and Cellular Neuroscience.

[50]  R. Macdonald,et al.  The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  C. Keller,et al.  The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Noebels,et al.  The biology of epilepsy genes. , 2003, Annual review of neuroscience.

[53]  Bernhard Lüscher,et al.  The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses , 2003, Molecular and Cellular Neuroscience.

[54]  Christopher B. Burge,et al.  Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.

[55]  I. Mansuy,et al.  The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses. , 2003, Molecular and cellular neurosciences.

[56]  U. Stephani,et al.  Atypical “Benign” Partial Epilepsy or Pseudo-Lennox Syndrome. Part I: Symptomatology and Long-Term Prognosis , 2001, Neuropediatrics.

[57]  U. Stephani,et al.  Atypical "benign" partial epilepsy of childhood or pseudo-lennox syndrome. Part II: family study. , 2001, Neuropediatrics.

[58]  R. Olsen,et al.  GABA receptor function and epilepsy. , 1999, Advances in neurology.

[59]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[60]  J. Benson,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. , 1998, Nature neuroscience.

[61]  J. Fisher,et al.  Single channel properties of recombinant GABAA receptors containing γ2 or δ subtypes expressed with α1 and β3 subtypes in mouse L929 Cells , 1997, The Journal of physiology.

[62]  R. Macdonald,et al.  Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single- channel properties , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  W Wisden,et al.  The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  P. D. De Deyn,et al.  Epilepsy and the GABA-hypothesis a brief review and some examples. , 1990, Acta neurologica Belgica.

[65]  J. Aicardi,et al.  Atypical Benign Partial Epilepsy of Childhood , 1982, Developmental medicine and child neurology.