An iterative orthogonal forward regression algorithm

A novel iterative learning algorithm is proposed to improve the classic Orthogonal Forward Regression (OFR) algorithm in an attempt to produce an optimal solution under a purely OFR framework without using any other auxiliary algorithms. The new algorithm searches for the optimal solution on a global solution space while maintaining the advantage of simplicity and computational efficiency. Both a theoretical analysis and simulations demonstrate the validity of the new algorithm.

[1]  Sheng Chen,et al.  Identification of non-linear output-affine systems using an orthogonal least-squares algorithm , 1988 .

[2]  Michael Nikolaou,et al.  Simultaneous Constrained Model Predictive Control and Identification of DARX Processes , 1998, Autom..

[3]  S. Billings,et al.  Algorithms for minimal model structure detection in nonlinear dynamic system identification , 1997 .

[4]  S. Billings,et al.  Correlation based model validity tests for non-linear models , 1986 .

[5]  Rosalind W. Picard,et al.  On the efficiency of the orthogonal least squares training method for radial basis function networks , 1996, IEEE Trans. Neural Networks.

[6]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[7]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[8]  Sean R. Anderson,et al.  Computational system identification for Bayesian NARMAX modelling , 2013, Autom..

[9]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[10]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[11]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[12]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[13]  Stephen A. Billings,et al.  Sparse Model Identification Using a Forward Orthogonal Regression Algorithm Aided by Mutual Information , 2007, IEEE Transactions on Neural Networks.

[14]  Stephen A. Billings,et al.  Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information , 2008, Int. J. Model. Identif. Control..

[15]  A. Garulli,et al.  Block recursive parallelotopic bounding in set membership identification , 1998 .

[16]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[17]  L. A. Aguirre,et al.  EFFECTS OF THE SAMPLING TIME ON THE DYNAMICS AND IDENTIFICATION OF NONLINEAR MODELS , 1995 .

[18]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[19]  Stephen A. Billings,et al.  Nonlinear model validation using correlation tests , 1994 .

[20]  S. A. Billings,et al.  Model Identification and Assessment Based on Model Predicted Output , 1998 .

[21]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[22]  Sheng Chen,et al.  Extended model set, global data and threshold model identification of severely non-linear systems , 1989 .