Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thrust during locomotion. In this Overview, we concentrate on the generation of either forward- or backward-directed motion during crawling and swimming. We describe locomotion behavior, the parts constituting the locomotion system, and the relevant neuronal connectivity. Because it is not yet fully understood how these components combine to generate locomotion, we discuss competing hypotheses and models.

[1]  T. Brown,et al.  The Factors in Rhythmic Activity of the Nervous System , 1912 .

[2]  Donald M. Wilson The Central Nervous Control of Flight in a Locust , 1961 .

[3]  J. Gray,et al.  THE LOCOMOTION OF NEMATODES. , 1964, The Journal of experimental biology.

[4]  R. V. von Baumgarten,et al.  Pacemaker properties of completely isolated neurones in Aplysia californica. , 1971, Nature: New biology.

[5]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  D. Albertson,et al.  Connectivity changes in a class of motoneurone during the development of a nematode , 1978, Nature.

[7]  J. Sulston,et al.  Some Observations On Moulting in Caenorhabditis Elegans , 1978 .

[8]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Ralph E. Davis,et al.  Neural control of behaviour in Ascaris , 1985, Trends in Neurosciences.

[10]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  P. Erdös,et al.  Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface. , 1991, Biophysical journal.

[12]  R. Waterston,et al.  Muscle cell attachment in Caenorhabditis elegans , 1991, The Journal of cell biology.

[13]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[14]  P. Erdös,et al.  Theory of the locomotion of nematodes: control of the somatic motor neurons by interneurons. , 1993, Mathematical biosciences.

[15]  S. Grillner,et al.  Neural networks that co-ordinate locomotion and body orientation in lamprey , 1995, Trends in Neurosciences.

[16]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[17]  M. S. Tu,et al.  The Function of Dipteran Flight Muscle , 1997 .

[18]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[19]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[20]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[21]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[22]  Jianhua Cang,et al.  Model for intersegmental coordination of leech swimming: central and sensory mechanisms. , 2002, Journal of neurophysiology.

[23]  Arthur D Kuo,et al.  The relative roles of feedforward and feedback in the control of rhythmic movements. , 2002, Motor control.

[24]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[25]  J. Angstadt,et al.  Slow active potentials in ventral inhibitory motor neurons of the nematode Ascaris , 1989, Journal of Comparative Physiology A.

[26]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[27]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[28]  Qiang Liu,et al.  Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans* , 2006, Journal of Biological Chemistry.

[29]  P. Sternberg,et al.  A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue , 2006, Nature.

[30]  Stephen E Von Stetina,et al.  The motor circuit. , 2006, International review of neurobiology.

[31]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[33]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[34]  Paul W. Sternberg,et al.  Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics , 2007, Journal of Computational Neuroscience.

[35]  Beth L Pruitt,et al.  Analysis of nematode mechanics by piezoresistive displacement clamp , 2007, Proceedings of the National Academy of Sciences.

[36]  L. Ségalat,et al.  The C. elegans dense body: anchoring and signaling structure of the muscle , 2007, Journal of Muscle Research and Cell Motility.

[37]  Jonathan T. Pierce-Shimomura,et al.  Genetic analysis of crawling and swimming locomotory patterns in C. elegans , 2008, Proceedings of the National Academy of Sciences.

[38]  David M. Raizen,et al.  Lethargus is a Caenorhabditis elegans sleep-like state , 2008, Nature.

[39]  A. V. Maricq,et al.  Action potentials contribute to neuronal signaling in C. elegans , 2008, Nature Neuroscience.

[40]  M. Zhen,et al.  Optogenetic analysis of synaptic function , 2008, Nature Methods.

[41]  S. Fields,et al.  Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans , 2008, The Journal of comparative neurology.

[42]  David H. Hall,et al.  C. elegans Atlas , 2008 .

[43]  John Bryden,et al.  Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback , 2008, Biological Cybernetics.

[44]  Bryan Petzold,et al.  SU-8 force sensing pillar arrays for biological measurements. , 2009, Lab on a chip.

[45]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[46]  N. Cohen,et al.  Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait , 2009, HFSP journal.

[47]  P. Arratia,et al.  Material properties of Caenorhabditis elegans swimming at low Reynolds number. , 2009, Biophysical journal.

[48]  Aravinthan D. T. Samuel,et al.  Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans , 2010, Proceedings of the National Academy of Sciences.

[49]  Michael J. O'Donovan,et al.  Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[50]  M. Brauner,et al.  Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin , 2011, Proceedings of the National Academy of Sciences.

[51]  M. Zhen,et al.  Action potentials drive body wall muscle contractions in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[52]  J. Kaplan,et al.  A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in Neurotransmitter Release , 2011, Neuron.

[53]  Zhaoyang Feng,et al.  The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans , 2011, Cell.

[54]  Michael J. O'Donovan,et al.  A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[55]  W. Bialek,et al.  Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[56]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[57]  Bojun Chen,et al.  Gap Junctions Synchronize Action Potentials and Ca2+ Transients in Caenorhabditis elegans Body Wall Muscle* , 2011, The Journal of Biological Chemistry.

[58]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[59]  Beth L Pruitt,et al.  Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. , 2011, Biophysical journal.

[60]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[61]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[62]  Laura J. Grundy,et al.  A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion , 2012, Proceedings of the National Academy of Sciences.

[63]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[64]  Jordan H. Boyle,et al.  Gait Modulation in C. elegans: An Integrated Neuromechanical Model , 2012, Front. Comput. Neurosci..

[65]  Pascal Hersen,et al.  Locomotion control of Caenorhabditis elegans through confinement. , 2012, Biophysical journal.

[66]  Jun Zhang,et al.  Experiments and theory of undulatory locomotion in a simple structured medium , 2012, Journal of The Royal Society Interface.

[67]  Gal Haspel,et al.  A connectivity model for the locomotor network of Caenorhabditis elegans , 2012, Worm.

[68]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[69]  Belinda Barbagallo,et al.  ACR-12 Ionotropic Acetylcholine Receptor Complexes Regulate Inhibitory Motor Neuron Activity in Caenorhabditis elegans , 2013, The Journal of Neuroscience.

[70]  Bojun Chen,et al.  Postsynaptic current bursts instruct action potential firing at a graded synapse , 2013, Nature Communications.

[71]  Stanislav Nagy,et al.  A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by Gαs signaling , 2013, eLife.

[72]  David Biron,et al.  The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. , 2013, Sleep.

[73]  Evan Z. Macosko,et al.  Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans , 2013, Cell.

[74]  Andrew M. Leifer,et al.  Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior , 2013, PLoS biology.

[75]  Volker Nock,et al.  On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. , 2013, Lab on a chip.

[76]  W. Ryu,et al.  Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm , 2013, Proceedings of the National Academy of Sciences.

[77]  Stephen J. Eglen,et al.  Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling , 2013, Front. Comput. Neurosci..

[78]  L. Avery,et al.  The Geometry of Locomotive Behavioral States in C. elegans , 2013, PloS one.

[79]  Paul W. Sternberg,et al.  Complex Orthogonal Decomposition Applied to Nematode Posturing , 2013 .