Plasmonic Circular Nanostructure for Enhanced Light Absorption in Organic Solar Cells

This study attempts to enhance broadband absorption in advanced plasmonic circular nanostructures (PCN). Experimental results indicate that the concentric circular metallic gratings can enhance broadband optical absorption, due to the structure geometry and the excitation of surface plasmon mode. The interaction between plasmonic enhancement and the absorption characteristics of the organic materials (P3HT:PCBM and PEDOT:PSS) are also examined. According to those results, the organic material's overall optical absorption can be significantly enhanced by up to ~51% over that of a planar device. Additionally, organic materials are enhanced to a maximum of 65% for PCN grating pitch = 800 nm. As a result of the PCN's enhancement in optical absorption, incorporation of the PCN into P3HT:PCBM-based organic solar cells (OSCs) significantly improved the performance of the solar cells: short-circuit current increased from 10.125 to 12.249 and power conversion efficiency from 3.2% to 4.99%. Furthermore, optimizing the OSCs architectures further improves the performance of the absorption and PCE enhancement.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[3]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[4]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[5]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[6]  Xiaofeng Li,et al.  Excitation and Optimization Modeling of Surface Plasmon Polaritons in a Concentric Circular Metallic Grating Film , 2010 .

[7]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[8]  T. Ebbesen,et al.  Plasmonic antennas for directional sorting of fluorescence emission. , 2011, Nano letters.

[9]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[10]  J.S. Aitchison,et al.  Modeling and Optimization of Quasi-Phase Matching Via Domain-Disordering , 2008, IEEE Journal of Quantum Electronics.

[11]  Zeyu Zhao,et al.  Engineering heavily doped silicon for broadband absorber in the terahertz regime. , 2012, Optics express.

[12]  Rui Wang,et al.  A Design Method for a Micron-Focusing Plasmonic Lens Based on Phase Modulation , 2010 .

[13]  Carsten Rockstuhl,et al.  Absorption enhancement in solar cells by localized plasmon polaritons , 2008 .

[14]  Cheng Huang,et al.  Truncated spherical voids for nearly omnidirectional optical absorption. , 2011, Optics express.

[15]  Ekmel Ozbay,et al.  Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. , 2011, Optics express.

[16]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[17]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[18]  Xiaoliang Ma,et al.  Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. , 2012, Optics express.

[19]  Hilmi Volkan Demir,et al.  Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. , 2011, Optics express.

[20]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[21]  Neil Genzlinger A. and Q , 2006 .

[22]  Chih-Kung Lee,et al.  Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device , 2007 .

[23]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[24]  Mingbo Pu,et al.  Engineering the dispersion of metamaterial surface for broadband infrared absorption. , 2012, Optics letters.

[25]  S.F. Yu,et al.  Static and Dynamic Modeling of Circular Grating-Coupled Distributed Feedback Lasers , 2008, IEEE Journal of Quantum Electronics.

[26]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[27]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[28]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .

[29]  Panagiotis Karagiannidis,et al.  Plasmonic silver nanoparticles for improved organic solar cells , 2012 .

[30]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[31]  W. Marsden I and J , 2012 .

[32]  Yang Kuo,et al.  Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures. , 2012, Optics express.

[33]  Qiwen Zhan,et al.  Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. , 2009, Nano letters.

[34]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.