Recent Advances in Research on Solid Rocket Propulsion

This paper is devoted to a review of some recent studies conducted at ONERA within the framework of solid rocket propulsion for missiles, as well as space launchers. The viewpoint adopted is to present the physical phenomena studied using modeling, simulations and experimentations. Three major scientific topics will be investigated in this article: combustion of solid propellants; motor interior ballistics with a focus on two-phase flows, turbulence and radiative effects; rocket exhaust plumes, including phenomena in the vicinity of the aft body.

[1]  Adèle Poubeau,et al.  Simulation des émissions d'un moteur à propergol solide : vers une modélisation multi-échelle de l'impact atmosphérique des lanceurs , 2015 .

[2]  A. Soufiani,et al.  Coupled radiation and turbulent multiphase flow in an aluminised solid propellant rocket engine , 2004 .

[3]  J. Finlinson,et al.  ULTRA PURE AMMONIUM PERCHLORATE T-BURNER PRESSURE COUPLED RESPONSE AT 500, 1000 AND 1800 PSI , 1998 .

[4]  Robert A. Beddini,et al.  Injection-induced flows in porous-walled ducts , 1985 .

[5]  L. Tessé,et al.  An optimized reciprocity Monte Carlo method for the calculation of radiative transfer in media of various optical thicknesses , 2006 .

[6]  S. Gallier,et al.  Simulations of heterogeneous propellant combustion : Effect of particle orientation and shape , 2015 .

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Nicolas Meynet,et al.  Simulation numérique de la combustion d'un propergol solide , 2005 .

[9]  L. Tessé,et al.  Radiative Transfer Modeling Developed at Onera for Numerical Simulations of Reactive Flows , 2012 .

[10]  Steven F. Son,et al.  Coupling micro and meso-scale combustion models of AP/HTPB propellants , 2013 .

[11]  Franck Godfroy,et al.  Aluminum Combustion Driven Instabilities in Solid Rocket Motors , 2009 .

[12]  François Vuillot,et al.  Vortex-Shedding Phenomena in Solid Rocket Motors , 1995 .

[13]  D. Zeitoun,et al.  Influence of Radiative Heating on a Martian Orbiter , 2008 .

[14]  Stability and sensitivity analysis in a simplified solid rocket motor flow , 2013, Journal of Fluid Mechanics.

[15]  Vincent Giovangigli,et al.  Application of continuation techniques to ammonium perchlorate plane flames , 2006 .

[16]  L. Tessé,et al.  Numerical Study of Solid-Rocket Motor Ignition Overpressure Wave Including Infrared Radiation , 2014 .

[17]  Marc Massot,et al.  Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion , 2013, J. Comput. Phys..

[18]  François Doisneau Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors , 2013 .

[19]  Joël Dupays,et al.  Contribution à l'étude du rôle de la phase condensée dans la stabilité d'un propulseur à propergol solide pour lanceur spatial , 1996 .

[20]  Grégoire Casalis,et al.  On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations , 2011 .

[21]  D. Gueyffier,et al.  Numerical Simulation of Ionized Rocket Plumes , 2014 .

[22]  Lionel Tessé,et al.  Modélisation des transferts radiatifs dans les flammes turbulentes par une méthode de Monte Carlo. (Monte Carlo modeling of radiative transfer in turbulent flames) , 2001 .

[23]  R. Hoglund Recent Advances in Gas-Particle Nozzle Flows , 1962 .

[24]  Valérie Rialland,et al.  Infrared signature modelling of a rocket jet plume - comparison with flight measurements , 2016 .

[25]  Shihab Rahman Modélisation et simulation numérique de flammes planes instationnaires de perchlorate d'ammonium , 2012 .

[27]  Philippe Villedieu,et al.  Numerical Modeling of Dispersed Two-Phase Flows , 2011 .

[28]  Thomas L. Jackson Modeling of Heterogeneous Propellant Combustion: A Survey , 2012 .

[29]  L. T. De Luca,et al.  Nonsteady Burning and Combustion Stability of Solid Propellants , 1992 .

[30]  L. Hespel,et al.  Evaluation of computation codes for rocket plume's infrared signature by using measurements on a small scale aluminized composite propellant motor , 2006, SPIE Defense + Commercial Sensing.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  W. C. Reynolds,et al.  The Element Potential Method for Chemical Equilibrium Analysis : Implementation in the Interactive Program STANJAN, Version 3 , 1986 .

[33]  R. W. Hermsen,et al.  Aluminum Oxide Particle Size for Solid Rocket Motor Performance Prediction , 1981 .

[34]  L. Tessé,et al.  Monte Carlo modeling of radiative transfer in a turbulent sooty flame , 2004 .

[35]  L. Tessé,et al.  Radiative transfer in real gases using reciprocal and forward Monte Carlo methods and a correlated-k approach , 2002 .

[36]  V. Giovangigli,et al.  Pressure and Initial Temperature Sensitivity Coefficient Calculations in Ammonium Perchlorate Flames , 2011 .

[37]  A. Roblin,et al.  ABSORPTION-SCATTERING COUPLING FOR THE INFRARED SIGNATURE OF AN ALUMINIZED SOLID ROCKET MOTOR , 2010 .