Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures

Abstract The design and optimization of a coupled multicomponent distillation system is a non-linear and multivariable problem. The complexity of this kind of problem results in high solving difficulty. This paper addresses the application of genetic algorithms to the optimization of intensified distillation systems for quaternary distillations. We used a multiobjective genetic algorithm with restrictions coupled to the Aspen Plus™ process simulator for the evaluation of the objective function. Several mixtures to test the effect of relative volatilities of feed mixtures on energy consumption, second law efficiency, total annual cost and theoretical control properties have been studied. Numerical performance shows that this design tool is robust and suitable for the design of coupled multicomponent distillation sequences.

[1]  S. Hernandez,et al.  Design of optimal thermally-coupled distillation systems using a dynamic model , 1996 .

[2]  D. W. Tedder,et al.  Parametric studies in industrial distillation , 1976 .

[3]  K. A. Amminudin,et al.  Design and Optimization of Fully Thermally Coupled Distillation Columns: Part 1: Preliminary Design and Optimization Methodology , 2001 .

[4]  C. Triantafyllou The Design and Optimisation of Fully Thermally Coupled Distillation Columns , 1992 .

[5]  Gade Pandu Rangaiah,et al.  Tabu search for global optimization of continuous functions with application to phase equilibrium calculations , 2003, Comput. Chem. Eng..

[6]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[7]  Francesca Ferrara,et al.  Design of heat integrated distillation systems for a light ends separation plant , 2007 .

[8]  Young Han Kim Structural Design of Extended Fully Thermally Coupled Distillation Columns , 2001 .

[9]  C. Pantelides,et al.  Optimal design of thermally coupled distillation columns , 1999 .

[10]  Jiří Jaromír Klemeš,et al.  PRES 2007: Carbon footprint and emission minimisation, integration and management of energy sources, industrial application and case studies , 2008 .

[11]  Noori Sotudeh,et al.  Extension of a Method for the Design of Divided Wall Columns , 2008 .

[12]  A. Jiménez,et al.  Energy-efficient designs of thermally coupled distillation sequences for four-component mixtures , 2003 .

[13]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[14]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[15]  Young Han Kim Structural design of fully thermally coupled distillation columns using a semi-rigorous model , 2005, Comput. Chem. Eng..

[16]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Rakesh Agrawal,et al.  Synthesis of Distillation Column Configurations for a Multicomponent Separation , 1996 .

[19]  Helmut Jansen,et al.  Distillation Column Internals/Configurations for Process Intensification* , 2003 .

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Peter Mizsey,et al.  A methodology to determine controllability indices in the frequency domain , 2008 .

[22]  A. Oyama,et al.  Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems Eurogen 2005 New Constraint-handling Method for Multi-objective Multi-constraint Evolutionary Optimization and Its Application to Space Plane Design , 2022 .

[23]  Massimiliano Errico,et al.  Energy saving in a crude distillation unit by a preflash implementation , 2009 .

[24]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[25]  Robin Smith,et al.  Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. , 2005, Environmental science & technology.

[26]  Eric S. Fraga,et al.  Synthesis and optimization of a nonideal distillation system using a parallel genetic algorithm , 1996 .

[27]  Arturo Jiménez,et al.  Design of energy-efficient Petlyuk systems , 1999 .

[28]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  I. Grossmann,et al.  Optimal Design of Complex Distillation Columns Using Rigorous Tray-by-Tray Disjunctive Programming Models , 2000 .

[31]  谢安俊,et al.  模拟软件—ASPEN PLUS , 1995 .

[32]  Andrzej Stankiewicz,et al.  Process Intensification: History, Philosophy, Principles , 2004 .

[33]  A. I. Stankiewicz,et al.  Process Intensification: Transforming Chemical Engineering , 2000 .

[34]  Ilkka Turunen,et al.  Process Intensification for the Retrofit of a Multicomponent Distillation PlantAn Industrial Case Study , 2008 .

[35]  C. F. King Analysis, Synthesis, and Design of Chemical Processes. Richard Turton, Richard Bailie, Wallace Whiting, Joseph Shaeiwitz Prentice Hall, 1998 , 1999 .

[36]  A. J. Finn,et al.  Consider thermally coupled distillation , 1993 .

[37]  Valentin Plesu,et al.  Residue curves map analysis for tert-amyl methyl ether synthesis by reactive distillation in kinetically controlled conditions with energy-saving evaluation , 2008 .

[38]  Ilkka Turunen,et al.  Process intensification for systematic synthesis of new distillation systems with less than N-1 columns , 2006 .

[39]  G. Aly,et al.  Effect of computation techniques for equation of state binary interaction parameters on the prediction of binary VLE data , 1996 .

[40]  Juan Gabriel Segovia-Hernández,et al.  Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures , 2006 .

[41]  Robert S. Huss,et al.  Green chemical engineering aspects of reactive distillation. , 2003, Environmental science & technology.

[42]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[43]  mez-Castro Dividing Wall Distillation Columns : Optimization and Control Properties , 2008 .

[44]  Andrzej Kraslawski,et al.  Partially thermally coupled distillation systems for multicomponent separations , 2003 .

[45]  Ilkka Turunen,et al.  Synthesis of Functionally Distinct Thermally Coupled Configurations for Quaternary Distillations , 2003 .

[46]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[47]  F. Petlyuk Thermodynamically Optimal Method for Separating Multicomponent Mixtures , 1965 .

[48]  Efstratios N. Pistikopoulos,et al.  Generalized modular framework for the representation and synthesis of complex distillation column sequences , 2005 .

[49]  Juan Gabriel Segovia-Hernández,et al.  Reduction of Energy Consumption and Greenhouse Gas Emissions in a Plant for the Separation of Amines , 2008 .

[50]  C. Triantafyllou,et al.  The design and optimisation of fully thermally coupled distillation columns : Process design , 1992 .

[51]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[52]  Andrzej Kraslawski,et al.  Design and synthesis of multicomponent thermally coupled distillation flowsheets , 2001 .

[53]  Michael A. Schultz,et al.  Reduce Costs with Dividing-Wall Columns , 2002 .

[54]  Dale F. Rudd,et al.  Parametric studies in industrial distillation: Part I. Design comparisons , 1978 .

[55]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[56]  Ignacio E. Grossmann,et al.  Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns , 2001 .

[57]  Gade Pandu Rangaiah,et al.  Retrofitting conventional column systems to dividing-Wall Columns , 2009 .

[58]  Andrzej Kraslawski,et al.  The synthesis of thermally coupled distillation flowsheets for separations of five-component mixtures , 2000 .

[59]  Sigurd Skogestad,et al.  Complex distillation arrangements: Extending the petlyuk ideas , 1997 .

[60]  Claudia Gutiérrez-Antonio,et al.  Pareto front of ideal Petlyuk sequences using a multiobjective genetic algorithm with constraints , 2009, Comput. Chem. Eng..