On the recovery of joint distributions from limited information
暂无分享,去创建一个
[1] H. Ohta,et al. A Test for Normality Based on Kullback—Leibler Information , 1989 .
[2] S. Kullback,et al. The Information in Contingency Tables , 1980 .
[3] E. Ziegel. COMPSTAT: Proceedings in Computational Statistics , 1988 .
[4] Allan W. Gray,et al. An Applied Procedure for Estimating and Simulating Multivariate Empirical (MVE) Probability Distributions In Farm-Level Risk Assessment and Policy Analysis , 2000, Journal of Agricultural and Applied Economics.
[5] C. R. Taylor. Two Practical Procedures for Estimating Multivariate Nonnormal Probability Density Functions , 1990 .
[6] B. R. Crain. An Information Theoretic Approach to Approximating a Probability Distribution , 1977 .
[7] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[8] S. Kotz,et al. Correlation Structure in Iterated Farlie-Gumbel-Morgenstern Distributions. , 1984 .
[9] L. Devroye. A Course in Density Estimation , 1987 .
[10] L. Cobb,et al. Estimation and Moment Recursion Relations for Multimodal Distributions of the Exponential Family , 1983 .
[11] Kenneth J. Koehler,et al. A strategy for constructing multivariate distributions , 1995 .
[12] M. Jansen,et al. Maximum entropy distributions with prescribed marginals and normal score correlations , 1997 .
[13] N. L. Johnson,et al. On some generalized farlie-gumbel-morgenstern distributions-II regression, correlation and further generalizations , 1977 .
[14] Dou Long,et al. A family of bivariate densities constructed from marginals , 1995 .
[15] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[16] R. Mittelhammer. Mathematical Statistics for Economics and Business , 1996 .
[17] Stuart A. Klugman,et al. Fitting bivariate loss distributions with copulas , 1999 .
[18] M. E. Johnson,et al. A Bivariate Distribution Family with Specified Marginals , 1981 .
[19] W. Deming,et al. On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .
[20] Norman L. Johnson,et al. On some generalized farlie-gumbel-morgenstern distributions , 1975 .
[21] S. Kullback,et al. Contingency tables with given marginals. , 1968, Biometrika.
[22] I. Olkin,et al. Families of Multivariate Distributions , 1988 .
[23] Douglas J. Miller,et al. Maximum entropy econometrics: robust estimation with limited data , 1996 .
[24] S. Kotz,et al. A New Approach to Dependence in Multivariate Distributions , 1991 .
[25] Dirk Ormoneit,et al. An efficient algorithm to compute maximum entropy densities , 1999 .
[26] Shelby J. Haberman,et al. Adjustment by Minimum Discriminant Information , 1984 .
[27] M. Piedmonte,et al. A Method for Generating High-Dimensional Multivariate Binary Variates , 1991 .
[28] Jose Luis Beltran Guerrero,et al. Multivariate mutual information , 1994 .
[29] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[30] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[31] C. Klaassen,et al. Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .
[32] I. Good. Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .
[33] Samuel Kotz,et al. Advances in Probability Distributions with Given Marginals , 1991 .
[34] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[35] G. Dall’aglio,et al. Frechet Classes: The Beginnings , 1991 .
[36] C. Genest,et al. The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .
[37] Richard A. Highfield,et al. Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .
[38] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[39] W. R. Schucany,et al. Correlation structure in Farlie-Gumbel-Morgenstern distributions , 1978 .
[40] L. Mead,et al. Maximum entropy in the problem of moments , 1984 .
[41] P. Bickel,et al. Efficient estimation of linear functionals of a probability measure P with known marginal distributions , 1991 .
[42] S. Kullback. Probability Densities with Given Marginals , 1968 .
[43] Alan J. Lee,et al. Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association , 1993 .
[44] H. Ryu. Maximum entropy estimation of density and regression functions , 1993 .
[45] George G. Judge,et al. Econometric foundations , 2000 .
[46] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[47] P. Hall. On Kullback-Leibler loss and density estimation , 1987 .
[48] E. Käärik,et al. Generation and Investigation of Multivariate Distributions having Fixed Discrete Marginals , 1996 .
[49] Paul L. Fackler,et al. Modeling Interdependence: An Approach to Simulation and Elicitation , 1991 .
[50] H. Joe. Multivariate models and dependence concepts , 1998 .
[51] Emiliano A. Valdez,et al. Annuity Valuation with Dependent Mortality , 1996 .
[52] Nader Ebrahimi,et al. Testing exponentiality based on Kullback-Leibler information , 1992 .
[53] Jeffrey S. Racine,et al. Entropy and predictability of stock market returns , 2002 .
[54] E. Maasoumi. A compendium to information theory in economics and econometrics , 1993 .
[55] R. Nelsen. An Introduction to Copulas , 1998 .
[56] A. Barron,et al. APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .
[57] Josef Štěpán,et al. Distributions with given marginals and moment problems , 1997 .
[58] Harry Joe,et al. Parametric families of multivariate distributions with given margins , 1993 .
[59] H. Joe. Relative Entropy Measures of Multivariate Dependence , 1989 .