Coherent dynamics of a telecom-wavelength entangled photon source

Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

[1]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[2]  Yasuhiko Arakawa,et al.  An optical horn structure for single-photon source using quantum dots at telecommunication wavelengtha) , 2007 .

[3]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[4]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[5]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[6]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[7]  N. Gisin,et al.  Four-photon correction in two-photon Bell experiments , 2004, quant-ph/0407189.

[8]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[9]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[10]  C. M. Natarajan,et al.  Biexciton cascade in telecommunication wavelength quantum dots , 2010 .

[11]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[12]  Philip Battle,et al.  High-quality fiber-optic polarization entanglement distribution at 1.3 microm telecom wavelength. , 2010, Optics letters.

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[15]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[16]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[17]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[18]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[19]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[20]  Annamaria Gerardino,et al.  Time-resolved and antibunching experiments on single quantum dots at 1300 nm , 2006 .

[21]  Andrew J. Shields,et al.  On-demand single-photon source for 1.3μm telecom fiber , 2005 .

[22]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[23]  A. Eckstein,et al.  Direct bell states generation on a III-V semiconductor chip at room temperature , 2013, CLEO: 2013.

[24]  R. M. Stevenson,et al.  Electric-field-induced coherent coupling of the exciton states in a single quantum dot , 2010, 1203.5909.

[25]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[26]  R. M. Stevenson,et al.  Inversion of exciton level splitting in quantum dots , 2005 .

[27]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[28]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[29]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[30]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[31]  R. M. Stevenson,et al.  All-electrical coherent control of the exciton states in a single quantum dot , 2010, 1011.2641.