Simple Type Theory is not too Simple: Grothendieck's Schemes without Dependent Types

We report on a formalization of schemes in the proof assistant Isabelle/HOL, and we discuss the design choices made in the process. Schemes are sophisticated mathematical objects in algebraic geometry introduced by Alexander Grothendieck in 1960. This experiment shows that the simple type theory implemented in Isabelle can handle such elaborate constructions despite doubts raised about Isabelle’s capability in that direction. We show in the particular case of schemes how the powerful dependent types of Coq or Lean can be traded for a minimalist apparatus called locales.

[1]  Clemens Ballarin Locales: A Module System for Mathematical Theories , 2013, Journal of Automated Reasoning.

[2]  Clemens Ballarin,et al.  Interpretation of Locales in Isabelle: Theories and Proof Contexts , 2006, MKM.

[3]  Andrei Popescu,et al.  From Types to Sets by Local Type Definition in Higher-Order Logic , 2018, Journal of Automated Reasoning.

[4]  Jeremy Avigad,et al.  The Lean Theorem Prover (System Description) , 2015, CADE.

[5]  Lawrence C. Paulson,et al.  Grothendieck's Schemes in Algebraic Geometry , 2021, Arch. Formal Proofs.

[6]  Thierry Coquand,et al.  Inductively defined types , 1988, Conference on Computer Logic.

[7]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  Manuel Eberl,et al.  Nine Chapters of Analytic Number Theory in Isabelle/HOL , 2019, ITP.

[10]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[11]  L. Chen,et al.  Groups, Rings and Modules , 2004, Arch. Formal Proofs.

[12]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[13]  Johannes Hölzl,et al.  Type Classes and Filters for Mathematical Analysis in Isabelle/HOL , 2013, ITP.

[14]  Guillaume Melquiond,et al.  Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..

[15]  A. Grothendieck Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .

[16]  Laurent Igal Chicli Sur la formalisation des mathématiques dans le calcul des constructions inductives , 2003 .

[17]  T. Willmore Algebraic Geometry , 1973, Nature.

[18]  Lawrence C. Paulson,et al.  Algebraically Closed Fields in Isabelle/HOL , 2020, IJCAR.

[19]  Clemens Ballarin Exploring the Structure of an Algebra Text with Locales , 2019, Journal of Automated Reasoning.

[20]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[21]  Christine Paulin-Mohring,et al.  The coq proof assistant reference manual , 2000 .

[22]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.