A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr)

Spectroscopic observations of the fast X-ray transient and superluminal jet source SAX J1819.3-2525 (V4641 Sgr) reveal a best-fitting period of Pspect = 2.81678 ± 0.00056 days and a semiamplitude of K2 = 211.0 ± 3.1 km s-1. The optical mass function is f(M) = 2.74 ± 0.12 M☉. We find a photometric period of Pphoto = 2.81730 ± 0.00001 days using a light curve measured from photographic plates. The folded light curve resembles an ellipsoidal light curve with two maxima of roughly equal height and two minima of unequal depth per orbital cycle. The secondary star is a late B-type star that has evolved off the main sequence. Using a moderate resolution spectrum (R = 7000) we measure Teff = 10500 ± 200 K, log g = 3.5 ± 0.1, and Vrot sin i = 123 ± 4 km s-1 (1 σ errors). Assuming synchronous rotation, our measured value of the projected rotational velocity implies a mass ratio of Q ≡ M1/M2 = 1.50 ± 0.08 (1 σ). The lack of X-ray eclipses implies an upper limit to the inclination of i ≤ 707. On the other hand, the large amplitude of the folded light curve (≈0.5 mag) implies a large inclination (i 60°). Using the above mass function, mass ratio, and inclination range, the mass of the compact object is in the range 8.73 ≤ M1 ≤ 11.70 M☉ and the mass of the secondary star is in the range 5.49 ≤ M2 ≤ 8.14 M☉ (90% confidence). The mass of the compact object is well above the maximum mass of a stable neutron star, and we conclude that V4641 Sgr contains a black hole. The B-star secondary is by far the most massive, the hottest, and the most luminous secondary of the dynamically confirmed black hole X-ray transients. We find that the α-process elements nitrogen, oxygen, calcium, magnesium, and titanium may be overabundant in the secondary star by factors of 2-10 times with respect to the Sun. Finally, assuming E(B-V) = 0.32 ± 0.10, we find a distance 7.40 ≤ d ≤ 12.31 kpc (90% confidence). This large distance and the high proper motions observed for the radio counterpart make V4641 Sgr possibly the most superluminal galactic source known, with an apparent expansion velocity of 9.5c and a bulk Lorentz factor of Γ 9.5, assuming that the jets were ejected during one of the bright X-ray flares observed with the Rossi X-ray Timing Explorer.

[1]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[2]  A. Stark,et al.  The rotation curve of the Milky Way to 2 R(0) , 1989 .

[3]  Tim Naylor,et al.  The mass of the black hole in V404 Cygni , 1994 .

[4]  Charles D. Bailyn,et al.  THE MASS DISTRIBUTION OF STELLAR BLACK HOLES , 1998 .

[5]  Simon T. Garrington,et al.  Light Curves and Radio Structure of the 1999 September Transient Event in V4641 Sagittarii (=XTE J1819–254=SAX J1819.3–2525) , 2000 .

[6]  L. Natalucci,et al.  Bursting sources in the Galactic Centre region , 1999 .

[7]  A TiO study of the black hole binary GRO J0422+32 in a very low state , 2000, astro-ph/0004235.

[8]  J. Orosz,et al.  Orbital Parameters for the Soft X-Ray Transient 4U 1543–47: Evidence for a Black Hole , 1997, astro-ph/9712018.

[9]  P. H. Hauschildt,et al.  Numerical solution of the expanding stellar atmosphere problem , 1998 .

[10]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[11]  J. McClintock,et al.  The Black Hole Binary A0620-00 , 1986 .

[12]  R. Stellingwerf Period determination using phase dispersion minimization , 1978 .

[13]  J. Orosz,et al.  Improved Parameters for the Black Hole Binary System X-Ray Nova MUSCAE 1991 , 1996 .

[14]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[15]  Charles D. Bailyn,et al.  Optical and Infrared Photometry of the Microquasar GRO J1655-40 in Quiescence , 2001 .

[16]  Astronomy,et al.  Multiepoch Very Long Baseline Array Observations of EGRET-detected Quasars and BL Lacertae Objects: Superluminal Motion of Gamma-Ray Bright Blazars , 2001, astro-ph/0101570.

[17]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[18]  I. Mirabel,et al.  Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.

[19]  P. Szkody,et al.  Spectroscopy of Poorly Studied Cataclysmic Variables , 1995 .

[20]  Eduardo L. Martin,et al.  Evidence of a supernova origin for the black hole in the system GRO J1655 - 40 , 1999, Nature.

[21]  J. Tomkin,et al.  The chemical composition of algol systems – III. Beta Lyrae–nucleosynthesis revealed , 1986 .

[22]  D. Fabricant,et al.  The FAST Spectrograph for the Tillinghast Telescope , 1998 .

[23]  Robert L. Kurucz,et al.  A calibration of Geneva photometry for B to G stars in terms of Teff, log g and $[M/H]$ , 1997 .

[24]  Lothar Noethe,et al.  Active optics. Pt. 4. Set-up and performance of the optics of the ESO New Technology Telescope (NTT) in the observatory. , 1991 .

[25]  E. L. Robinson,et al.  On the mass of the compact object in the black hole binary A0620-00 , 1993 .

[26]  J. Wheeler Supernovae and Gamma-Ray Bursts , 2000 .

[27]  J. Hartle,et al.  Stationary configurations and the upper bound on the mass of nonrotating, causal neutron stars , 1976 .

[28]  C. Simon Jeffery,et al.  Newsletter on Analysis of Astronomical Spectra , 1996 .

[29]  J. Orosz,et al.  Optical Observations of GRO J1655–40 in Quiescence. I. A Precise Mass for the Black Hole Primary , 1996, astro-ph/9610211.

[30]  Rudy WijnandsMichiel van der Klis The Rapid X-Ray Variability of V4641 Sagittarii (SAX J1819.3-2525 = XTE J1819-254). , 2000 .

[31]  E. L. Robinson,et al.  Spectroscopy of $A0620-00$: the mass of the black hole and an image of its accretion disc , 1994 .

[32]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .