A finite horizon model for repairable systems with repair restrictions

In this paper, we will present a new finite horizon repair/replacement decision model and derive the structure of the optimal policy for components that have a failure intensity that is a non-decreasing function of the number of times the component has been repaired, and independent of the component's age. Furthermore, the component has physical restrictions on the number of times it can be repaired, after which the only feasible decision is to replace the component. The fundamentals of this new decision model are based on the outcomes of several case studies done by the authors. Besides presenting the model and showing the structure of the optimal policy, the model will be applied to a real industry data set, and its results discussed.

[1]  Michael Tortorella,et al.  Reliability Theory: With Applications to Preventive Maintenance , 2001, Technometrics.

[2]  Xiaoyue Jiang,et al.  On a conjecture of optimal repair-replacement strategies for warranted products , 2006, Math. Comput. Model..

[3]  E. V. Walker,et al.  Applying proportional hazards modelling in reliability , 1991 .

[4]  Frank Proschan,et al.  Periodic Replacement with Increasing Minimal Repair Costs at Failure , 1982, Oper. Res..

[5]  S. K. Srinivasan,et al.  Stochastic Point Processes , 1978 .

[6]  C. E. Love,et al.  Application of Weibull proportional hazards modelling to bad-as-old failure data , 1991 .

[7]  M. J. Bibby,et al.  Case study 5: Processing to produce automobile radiators , 1999 .

[8]  Bengt Klefsjö,et al.  Proportional hazards model: a review , 1994 .

[9]  N. Hastings The Repair Limit Replacement Method , 1969 .

[10]  J. S. Dagpunar,et al.  Preventative maintenance strategy for equipment under warranty , 1994 .

[11]  P. C. Sander,et al.  Repairable systems reliability: Modeling, inference, misconceptions and their causes , 1986 .

[12]  J. I. Ansell,et al.  Practical Methods for Reliability Data Analysis , 1994 .

[13]  Uday Kumar,et al.  Reliability analysis of power transmission cables of electric mine loaders using the proportional hazards model , 1992 .

[14]  C. E. Love,et al.  Using proportional hazard modelling in plant maintenance , 1991 .

[15]  Andrew K. S. Jardine,et al.  Proportional hazards analysis of diesel engine failure data , 1989 .

[16]  Harold E. Ascher Repairable Systems Reliability , 2008 .

[17]  Diederik Lugtigheid,et al.  A model for optimal armature maintenance in electric haul truck wheel motors: a case study , 2004, Reliab. Eng. Syst. Saf..

[18]  David Olwell,et al.  Reliability Modeling, Prediction, and Optimization , 2001, Technometrics.

[19]  J. S. Dagpunar,et al.  An optimal imperfect maintenance policy over a warranty period , 1994 .

[20]  Hongzhou Wang,et al.  A survey of maintenance policies of deteriorating systems , 2002, Eur. J. Oper. Res..

[21]  D.,et al.  Regression Models and Life-Tables , 2022 .

[22]  D. N. P. Murthy,et al.  Reliability: Modeling, Prediction, and Optimization , 2000 .

[23]  A. Bendell,et al.  Proportional hazards modelling in reliability assessment , 1985 .

[24]  Nat Jack,et al.  Optimal repair-replace strategies for a warranted product , 2000 .

[25]  Waltraud Kahle,et al.  A general repair, proportional-hazards, framework to model complex repairable systems , 2003, IEEE Trans. Reliab..

[26]  Y. H. Chun,et al.  Optimal number of periodic preventive maintenance operations under warranty , 1992 .

[27]  A. K. S. Jardine,et al.  Maintenance, Replacement, and Reliability , 2021 .

[28]  Philip J. Boland Periodic replacement when minimal repair costs vary with time , 1982 .

[29]  Dhananjay Kumar,et al.  Proportional hazards modelling of repairable systems , 1995 .

[30]  Herbert E. Scarf,et al.  Studies in applied probability and management science , 1962 .