Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts.

Multi-functionalization and isomer-purity of fullerenes are crucial tasks for the development of fullerene chemistry in various fields. In both current main approaches - tether-directed covalent functionalization and supramolecular masks - the control of regioselectivity requires multi-step synthetic procedures to prepare the desired tether or mask. Herein, we describe light-responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis-adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis-addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis-functionalization of C60 can be controlled by light.

[1]  L. Pesce,et al.  Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage , 2020, Journal of the American Chemical Society.

[2]  S. Wezenberg,et al.  Stiff‐Stilbene Photoswitches: From Fundamental Studies to Emergent Applications , 2020, Angewandte Chemie.

[3]  A. Hirsch,et al.  Photoswitchable Norbornadiene–Quadricyclane Interconversion Mediated by Covalently Linked C60 , 2020, Chemistry (Weinheim an Der Bergstrasse, Germany).

[4]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[5]  J. Rojo,et al.  Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. , 2019, Journal of the American Chemical Society.

[6]  Alexis Goulet-Hanssens,et al.  Modulating Guest Uptake in Core-Shell MOFs with Visible Light. , 2019, Angewandte Chemie.

[7]  S. Hecht,et al.  Modulierung der Gastaufnahme in Core‐Shell‐MOFs mit sichtbarem Licht , 2019, Angewandte Chemie.

[8]  F. Raymo,et al.  An all-photonic full color RGB system based on molecular photoswitches , 2019, Nature Communications.

[9]  M. Garcia‐Borràs,et al.  Supramolecular Fullerene Sponges As Catalytic Masks for Regioselective Functionalization of C 60 , 2019, Chem.

[10]  T. Umeyama,et al.  Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells. , 2019, Accounts of chemical research.

[11]  S. Bandyopadhyay,et al.  Light triggered encapsulation and release of C60 with a photoswitchable TPE-based supramolecular tweezers , 2019, Scientific Reports.

[12]  A. Priimagi,et al.  Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio‐Interfaces , 2019, Advanced Optical Materials.

[13]  A. Voityuk,et al.  All-Fullerene Electron Donor-Acceptor Conjugates. , 2019, Angewandte Chemie.

[14]  M. Baroncini,et al.  Light‐Responsive (Supra)Molecular Architectures: Recent Advances , 2019, Advanced Optical Materials.

[15]  M. Valášek,et al.  A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. , 2019, Journal of the American Chemical Society.

[16]  Bin Chen,et al.  Pd(II) Coordination Sphere Engineering: Pyridine Cages, Quinoline Bowls, and Heteroleptic Pills Binding One or Two Fullerenes , 2019, Journal of the American Chemical Society.

[17]  S. Hecht,et al.  Designing Molecular Photoswitches for Soft Materials Applications , 2019, Advanced Optical Materials.

[18]  A. A. Khuzin,et al.  Reversible luminescence switching of a photochromic fullerene[60]-containing spiropyran , 2019, Journal of Photochemistry and Photobiology A: Chemistry.

[19]  N. Martín The Legacy of Sir Harold W. Kroto: Fullerenes and Beyond , 2019, Chem.

[20]  Z. Pianowski Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. , 2019, Chemistry.

[21]  A. Voityuk,et al.  All-Fullerene Electron Donor-Acceptor Conjugates. , 2019, Angewandte Chemie.

[22]  M. Baroncini,et al.  Photoactive Molecular‐Based Devices, Machines and Materials: Recent Advances , 2018, European journal of inorganic chemistry.

[23]  A. Priimagi,et al.  Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects , 2018, Nature Communications.

[24]  M. Baroncini,et al.  Reversible Photoswitching and Isomer‐Dependent Diffusion of Single Azobenzene Tetramers on a Metal Surface , 2018, Angewandte Chemie.

[25]  B. Meyer,et al.  Concave-Convex π-π Template Approach Enables the Synthesis of [10]Cycloparaphenylene-Fullerene [2]Rotaxanes. , 2018, Journal of the American Chemical Society.

[26]  Jared D. Harris,et al.  New molecular switch architectures , 2018, Proceedings of the National Academy of Sciences.

[27]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[28]  Hong‐Cai Zhou,et al.  Tailor-Made Pyrazolide-Based Metal-Organic Frameworks for Selective Catalysis. , 2018, Journal of the American Chemical Society.

[29]  M. Maggini,et al.  The Renaissance of fullerenes with perovskite solar cells , 2017 .

[30]  S. Zakeeruddin,et al.  Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability , 2017, Advanced materials.

[31]  Jonathan R Nitschke,et al.  Separation and Selective Formation of Fullerene Adducts within an M(II)(8)L(6) Cage. , 2017, Journal of the American Chemical Society.

[32]  L. Echegoyen,et al.  Recent progress in the synthesis of regio-isomerically pure bis-adducts of empty and endohedral fullerenes , 2016 .

[33]  D. Guldi,et al.  Regio-, Stereo-, and Atropselective Synthesis of C60 Fullerene Bisadducts by Supramolecular-Directed Functionalization. , 2016, Angewandte Chemie.

[34]  M. Prato,et al.  Shuttling as a Strategy to Control the Regiochemistry of Bis-Additions on Fullerene Derivatives. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  M. Baroncini,et al.  The eternal youth of azobenzene: new photoactive molecular and supramolecular devices , 2015 .

[36]  J. Nierengarten,et al.  Fullerene sugar balls: a new class of biologically active fullerene derivatives. , 2014, Chemistry, an Asian journal.

[37]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[38]  E. Merino,et al.  Control over molecular motion using the cis–trans photoisomerization of the azo group , 2012, Beilstein journal of organic chemistry.

[39]  T. Moore,et al.  Conformationally constrained macrocyclic diporphyrin-fullerene artificial photosynthetic reaction center. , 2011, Journal of the American Chemical Society.

[40]  R. Burcl,et al.  Rotational barriers in azobenzene and azonaphthalene. , 2010, The journal of physical chemistry. A.

[41]  J. Morton,et al.  Photoisomerization of a fullerene dimer , 2008 .

[42]  F. Diederich,et al.  Tether-directed remote functionalization of fullerenes C 60 and C 70 , 2006 .

[43]  F. Diederich,et al.  Synthesis of trans-1, trans-2, trans-3, and trans-4 bisadducts of C60 by regio- and stereoselective tether-directed remote functionalization. , 2005, Chemistry.

[44]  M. Prato,et al.  Fullerene derivatives: an attractive tool for biological applications. , 2003, European journal of medicinal chemistry.

[45]  F. Diederich,et al.  Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry , 1999 .

[46]  F. Diederich,et al.  Macrocyclization on the fullerene core: Direct regio‐ and diastereoselective multi‐functionalization of [60]fullerene, and synthesis of fullerene‐dendrimer derivatives , 1997 .

[47]  T. Müller,et al.  Concise Route to Symmetric Multiadducts of [60]Fullerene: Preparation of an Equatorial Tetraadduct by Orthogonal Transposition , 1997 .

[48]  A. Hirsch,et al.  Regiochemistry of Twofold Additions to [6,6] Bonds in C60: Influence of the Addend‐Independent Cage Distortion in 1,2‐Monoadducts , 1996 .

[49]  F. Diederich,et al.  Regio‐ and Diastereoselective Bisfunctionalization of C60 and Enantioselective Synthesis of a C60 Derivative with a Chiral Addition Pattern , 1996 .

[50]  Jean-François Nierengarten,et al.  Regio‐ und diastereoselektive Bisfunktionalisierung von C60‐Fulleren und enantioselektive Synthese eines C60‐Fullerenderivates mit chiralem Additionsmuster , 1996 .

[51]  T. Müller,et al.  A Topochemically Controlled, Regiospecific Fullerene Bisfunctionalization , 1996 .

[52]  D. Schwarzenbach,et al.  Eine topochemisch kontrollierte, regiospezifische Fulleren‐Bisfunktionalisierung , 1996 .

[53]  F. Diederich,et al.  Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation† , 1994 .

[54]  François Diederich,et al.  Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .

[55]  A. Hirsch,et al.  Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene , 1994 .

[56]  Heinrich R. Karfunkel,et al.  Fullerenchemie in drei Dimensionen: Isolierung von sieben regioisomeren Bisaddukten sowie chiralen Trisaddukten aus C60 und Di(ethoxycarbonyl)methylen , 1994 .

[57]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[58]  E. Fischer Calculation of photostationary states in systems A .dblarw. B when only A is known , 1967 .

[59]  S. Ameerunisha,et al.  Characterization of simple photoresponsive systems and their applications to metal ion transport , 1995 .