Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts.
暂无分享,去创建一个
M. Prato | M. Baroncini | A. Credi | N. Demitri | S. Silvi | Francesca Arcudi | Luka Ðorđević | Lorenzo Casimiro
[1] L. Pesce,et al. Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage , 2020, Journal of the American Chemical Society.
[2] S. Wezenberg,et al. Stiff‐Stilbene Photoswitches: From Fundamental Studies to Emergent Applications , 2020, Angewandte Chemie.
[3] A. Hirsch,et al. Photoswitchable Norbornadiene–Quadricyclane Interconversion Mediated by Covalently Linked C60 , 2020, Chemistry (Weinheim an Der Bergstrasse, Germany).
[4] Zhenghong Lu,et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .
[5] J. Rojo,et al. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. , 2019, Journal of the American Chemical Society.
[6] Alexis Goulet-Hanssens,et al. Modulating Guest Uptake in Core-Shell MOFs with Visible Light. , 2019, Angewandte Chemie.
[7] S. Hecht,et al. Modulierung der Gastaufnahme in Core‐Shell‐MOFs mit sichtbarem Licht , 2019, Angewandte Chemie.
[8] F. Raymo,et al. An all-photonic full color RGB system based on molecular photoswitches , 2019, Nature Communications.
[9] M. Garcia‐Borràs,et al. Supramolecular Fullerene Sponges As Catalytic Masks for Regioselective Functionalization of C 60 , 2019, Chem.
[10] T. Umeyama,et al. Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells. , 2019, Accounts of chemical research.
[11] S. Bandyopadhyay,et al. Light triggered encapsulation and release of C60 with a photoswitchable TPE-based supramolecular tweezers , 2019, Scientific Reports.
[12] A. Priimagi,et al. Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio‐Interfaces , 2019, Advanced Optical Materials.
[13] A. Voityuk,et al. All-Fullerene Electron Donor-Acceptor Conjugates. , 2019, Angewandte Chemie.
[14] M. Baroncini,et al. Light‐Responsive (Supra)Molecular Architectures: Recent Advances , 2019, Advanced Optical Materials.
[15] M. Valášek,et al. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. , 2019, Journal of the American Chemical Society.
[16] Bin Chen,et al. Pd(II) Coordination Sphere Engineering: Pyridine Cages, Quinoline Bowls, and Heteroleptic Pills Binding One or Two Fullerenes , 2019, Journal of the American Chemical Society.
[17] S. Hecht,et al. Designing Molecular Photoswitches for Soft Materials Applications , 2019, Advanced Optical Materials.
[18] A. A. Khuzin,et al. Reversible luminescence switching of a photochromic fullerene[60]-containing spiropyran , 2019, Journal of Photochemistry and Photobiology A: Chemistry.
[19] N. Martín. The Legacy of Sir Harold W. Kroto: Fullerenes and Beyond , 2019, Chem.
[20] Z. Pianowski. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. , 2019, Chemistry.
[21] A. Voityuk,et al. All-Fullerene Electron Donor-Acceptor Conjugates. , 2019, Angewandte Chemie.
[22] M. Baroncini,et al. Photoactive Molecular‐Based Devices, Machines and Materials: Recent Advances , 2018, European journal of inorganic chemistry.
[23] A. Priimagi,et al. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects , 2018, Nature Communications.
[24] M. Baroncini,et al. Reversible Photoswitching and Isomer‐Dependent Diffusion of Single Azobenzene Tetramers on a Metal Surface , 2018, Angewandte Chemie.
[25] B. Meyer,et al. Concave-Convex π-π Template Approach Enables the Synthesis of [10]Cycloparaphenylene-Fullerene [2]Rotaxanes. , 2018, Journal of the American Chemical Society.
[26] Jared D. Harris,et al. New molecular switch architectures , 2018, Proceedings of the National Academy of Sciences.
[27] Rui Zhu,et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.
[28] Hong‐Cai Zhou,et al. Tailor-Made Pyrazolide-Based Metal-Organic Frameworks for Selective Catalysis. , 2018, Journal of the American Chemical Society.
[29] M. Maggini,et al. The Renaissance of fullerenes with perovskite solar cells , 2017 .
[30] S. Zakeeruddin,et al. Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability , 2017, Advanced materials.
[31] Jonathan R Nitschke,et al. Separation and Selective Formation of Fullerene Adducts within an M(II)(8)L(6) Cage. , 2017, Journal of the American Chemical Society.
[32] L. Echegoyen,et al. Recent progress in the synthesis of regio-isomerically pure bis-adducts of empty and endohedral fullerenes , 2016 .
[33] D. Guldi,et al. Regio-, Stereo-, and Atropselective Synthesis of C60 Fullerene Bisadducts by Supramolecular-Directed Functionalization. , 2016, Angewandte Chemie.
[34] M. Prato,et al. Shuttling as a Strategy to Control the Regiochemistry of Bis-Additions on Fullerene Derivatives. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.
[35] M. Baroncini,et al. The eternal youth of azobenzene: new photoactive molecular and supramolecular devices , 2015 .
[36] J. Nierengarten,et al. Fullerene sugar balls: a new class of biologically active fullerene derivatives. , 2014, Chemistry, an Asian journal.
[37] Tzung-Fang Guo,et al. CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.
[38] E. Merino,et al. Control over molecular motion using the cis–trans photoisomerization of the azo group , 2012, Beilstein journal of organic chemistry.
[39] T. Moore,et al. Conformationally constrained macrocyclic diporphyrin-fullerene artificial photosynthetic reaction center. , 2011, Journal of the American Chemical Society.
[40] R. Burcl,et al. Rotational barriers in azobenzene and azonaphthalene. , 2010, The journal of physical chemistry. A.
[41] J. Morton,et al. Photoisomerization of a fullerene dimer , 2008 .
[42] F. Diederich,et al. Tether-directed remote functionalization of fullerenes C 60 and C 70 , 2006 .
[43] F. Diederich,et al. Synthesis of trans-1, trans-2, trans-3, and trans-4 bisadducts of C60 by regio- and stereoselective tether-directed remote functionalization. , 2005, Chemistry.
[44] M. Prato,et al. Fullerene derivatives: an attractive tool for biological applications. , 2003, European journal of medicinal chemistry.
[45] F. Diederich,et al. Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry , 1999 .
[46] F. Diederich,et al. Macrocyclization on the fullerene core: Direct regio‐ and diastereoselective multi‐functionalization of [60]fullerene, and synthesis of fullerene‐dendrimer derivatives , 1997 .
[47] T. Müller,et al. Concise Route to Symmetric Multiadducts of [60]Fullerene: Preparation of an Equatorial Tetraadduct by Orthogonal Transposition , 1997 .
[48] A. Hirsch,et al. Regiochemistry of Twofold Additions to [6,6] Bonds in C60: Influence of the Addend‐Independent Cage Distortion in 1,2‐Monoadducts , 1996 .
[49] F. Diederich,et al. Regio‐ and Diastereoselective Bisfunctionalization of C60 and Enantioselective Synthesis of a C60 Derivative with a Chiral Addition Pattern , 1996 .
[50] Jean-François Nierengarten,et al. Regio‐ und diastereoselektive Bisfunktionalisierung von C60‐Fulleren und enantioselektive Synthese eines C60‐Fullerenderivates mit chiralem Additionsmuster , 1996 .
[51] T. Müller,et al. A Topochemically Controlled, Regiospecific Fullerene Bisfunctionalization , 1996 .
[52] D. Schwarzenbach,et al. Eine topochemisch kontrollierte, regiospezifische Fulleren‐Bisfunktionalisierung , 1996 .
[53] F. Diederich,et al. Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation† , 1994 .
[54] François Diederich,et al. Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .
[55] A. Hirsch,et al. Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene , 1994 .
[56] Heinrich R. Karfunkel,et al. Fullerenchemie in drei Dimensionen: Isolierung von sieben regioisomeren Bisaddukten sowie chiralen Trisaddukten aus C60 und Di(ethoxycarbonyl)methylen , 1994 .
[57] S. C. O'brien,et al. C60: Buckminsterfullerene , 1985, Nature.
[58] E. Fischer. Calculation of photostationary states in systems A .dblarw. B when only A is known , 1967 .
[59] S. Ameerunisha,et al. Characterization of simple photoresponsive systems and their applications to metal ion transport , 1995 .