Impact of solution pH (5–9) and dissolution products on in vitro behaviour of the bioactive glass S53P4

[1]  O. Karlström,et al.  Dissolution of bioactive glass S53P4 in a three-reactor cascade in continuous flow conditions , 2022, Open Ceramics.

[2]  J. Mauro,et al.  Insights into the Mechanism and Kinetics of Dissolution of Aluminoborosilicate Glasses in Acidic Media: Impact of High Ionic Field Strength Cations , 2022, SSRN Electronic Journal.

[3]  O. Karlström,et al.  Effect of local ion concentrations on the in vitro reactions of bioactive glass 45S5 particles , 2022, International Journal of Applied Glass Science.

[4]  P. Jutte,et al.  Mid-term clinical results of chronic cavitary long bone osteomyelitis treatment using S53P4 bioactive glass: a multi-center study , 2021, Journal of bone and joint infection.

[5]  R. Youngman,et al.  Dissolution kinetics of a sodium borosilicate glass in Tris buffer solutions: impact of Tris concentration and acid (HCl/HNO3) identity. , 2021, Physical chemistry chemical physics : PCCP.

[6]  M. Vallet‐Regí,et al.  Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. , 2021, Acta biomaterialia.

[7]  S. Zaouche,et al.  Tolerance and safety of 45S5 bioactive glass used in obliteration procedures during middle ear surgery: Preliminary results. , 2020, American journal of otolaryngology.

[8]  A. Trampuz,et al.  Antimicrobial activity of bioactive glass S53P4 against representative microorganisms causing osteomyelitis - Real-time assessment by isothermal microcalorimetry. , 2020, Colloids and surfaces. B, Biointerfaces.

[9]  R. Youngman,et al.  An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments. , 2020, Physical chemistry chemical physics : PCCP.

[10]  M. Kellomäki,et al.  Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. , 2019, Materials science & engineering. C, Materials for biological applications.

[11]  R. Geiss,et al.  Effect of chloride ions in Tris buffer solution on bioactive glass apatite mineralization , 2017 .

[12]  Cory L. Trivelpiece,et al.  Corrosion of ISG fibers in alkaline solutions , 2017 .

[13]  Julian R. Jones,et al.  Bioglass and Bioactive Glasses and Their Impact on Healthcare , 2016 .

[14]  J. Arts,et al.  S53P4 bioactive glass , 2016 .

[15]  S. Sander,et al.  Factors affecting intra-oral pH - a review. , 2016, Journal of oral rehabilitation.

[16]  L. Hupa,et al.  Dissolution of Bioactive Glasses in Acidic Solutions with the Focus on Lactic Acid , 2016 .

[17]  J. Massera,et al.  Dissolution behavior of the bioactive glass S53P4 when sodium is replaced by potassium, and calcium with magnesium or strontium , 2016 .

[18]  M. Kellomäki,et al.  Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. , 2015, Acta biomaterialia.

[19]  D. Brauer Bioactive glasses—structure and properties. , 2015, Angewandte Chemie.

[20]  D. Brauer,et al.  Influence of dissolution medium pH on ion release and apatite formation of Bioglass® 45S5 , 2015 .

[21]  S. Gin,et al.  The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass , 2015 .

[22]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[23]  L. Drago,et al.  Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study , 2013, BMC Infectious Diseases.

[24]  L. Hench Chronology of Bioactive Glass Development and Clinical Applications , 2013 .

[25]  S. Rawlinson,et al.  The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants , 2012 .

[26]  M. Hupa,et al.  Dissolution Kinetics of a Bioactive Glass by Continuous Measurement , 2012 .

[27]  L. Hupa,et al.  Surface reactions of bioactive glasses in buffered solutions , 2012 .

[28]  Delbert E Day,et al.  Bioactive glass in tissue engineering. , 2011, Acta biomaterialia.

[29]  P. Hyvönen,et al.  Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. , 2010, Bone.

[30]  E. Wagner,et al.  Phosphate‐Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra‐1 , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  D. Zaffe,et al.  Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids , 2009 .

[32]  Larry L. Hench,et al.  Genetic design of bioactive glass , 2009 .

[33]  M. Bohner,et al.  Can bioactivity be tested in vitro with SBF solution? , 2009, Biomaterials.

[34]  M. Hupa,et al.  Influence of fluid circulation on in vitro reactivity of bioactive glass particles , 2008 .

[35]  M. Hupa,et al.  In situ pH within particle beds of bioactive glasses. , 2008, Acta biomaterialia.

[36]  T. Peltola,et al.  Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro , 2008, Journal of materials science. Materials in medicine.

[37]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[38]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[39]  Junzo Tanaka,et al.  The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. , 2005, Biomaterials.

[40]  K. Powers,et al.  An analytical model for the dissolution of different particle size samples of Bioglass in TRIS-buffered solution. , 2005, Biomaterials.

[41]  L L Hench,et al.  In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. , 2002, Journal of biomedical materials research.

[42]  Henry N. Po,et al.  The Henderson-Hasselbalch Equation: Its History and Limitations , 2001 .

[43]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[44]  J. T. ten Cate,et al.  Silica-induced Precipitation of Calcium Phosphate in the Presence of Inhibitors of Hydroxyapatite Formation , 1992, Journal of dental research.

[45]  Ilkka Kangasniemi,et al.  Calcium phosphate formation at the surface of bioactive glass in vitro. , 1991, Journal of biomedical materials research.

[46]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[47]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[48]  T. Peltola,et al.  Bactericidal effects of bioactive glasses on clinically important aerobic bacteria , 2008, Journal of materials science. Materials in medicine.

[49]  L. Hench,et al.  Dose-dependent behavior of bioactive glass dissolution. , 2001, Journal of biomedical materials research.

[50]  P. Ducheyne,et al.  BIOACTIVE GLASS PARTICLES OF NARROW SIZE RANGE: A NEW MATERIAL FOR THE REPAIR OF BONE DEFECTS , 1993, Implant dentistry.

[51]  R. W. Douglas,et al.  Reactions of Glasses with Aqueous Solutions , 1967 .