Reconstruction of quantum theory on the basis of the formula of total probability

The notion of context (complex of physical conditions) is basic in this paper. We show that the main structures of quantum theory (interference of probabilities, Born’s rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and then probability.” We start with the conventional formula of total probability for contextual (conditional) probabilities and then we rewrite it by eliminating combinations of incompatible contexts from consideration. In this way we obtain interference of probabilities without to appeal to the Hilbert space formalism or wave mechanics. However, we did not just reconstruct the probabilistic formalism of conventional quantum mechanics. Our contextual probabilistic model is ess...

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  A. Holevo Statistical structure of quantum theory , 2001 .

[3]  Boris Gnedenko,et al.  Theory of Probability , 1963 .

[4]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[5]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[6]  Elio Conte,et al.  A Preliminar Evidence of Quantum Like Behavior in Measurements of Mental States , 2003 .

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  Alfred Landé,et al.  New Foundations of Quantum Mechanics , 1966 .

[9]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[10]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[11]  C. M. Care Probabilistic and Statistical Aspects of Quantum Theory: North-Holland Series in Statistics and Probability Vol 1 , 1983 .

[12]  Stan Gudder An Approach to Quantum Probability , 2001 .

[13]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[14]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[15]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[16]  Facultad de Estudios Superiores Cuautitlán Advances in applied Clifford algebras , 1991 .

[17]  H. S. Allen The Quantum Theory , 1928, Nature.

[18]  Marian Grabowski,et al.  Operational Quantum Physics , 2001 .

[19]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[20]  L. Brown Dirac ’ s The Principles of Quantum Mechanics * , 2006 .

[21]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[22]  Abner Shimony,et al.  The logic of quantum mechanics , 1981 .

[23]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[24]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[25]  Günther Ludwig Foundations of quantum mechanics , 1983 .

[26]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[27]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[28]  Asher Peres,et al.  Quantum Theory: Concepts and Methods , 1994 .

[29]  P. Dirac Principles of Quantum Mechanics , 1982 .

[30]  後藤 鉄男,et al.  J.M.Jauch: Foundation of Quantum Mechanics Addison-Wesley, 1968, 299頁, 16×23.5cm. , 1969 .

[31]  S. Gudder Review: A. S. Holevo, Probabilistic and statistical aspects of quantum theory , 1985 .

[32]  L. E. Ballentine Interpretations of Probability and Quantum Theory , 2001 .

[33]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[34]  E. Richard Cohen,et al.  Foundations of Quantum Theory , 1955 .

[35]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[36]  Louis de Broglie,et al.  The current interpretation of wave mechanics : a critical study , 1964 .

[37]  Arthur S. Wightman Hilbert''s sixth problem: Mathematical treatment of the ax-ioms of Physics , 1976 .

[38]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[39]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.