Double Pendulum and θ -Divisor
暂无分享,去创建一个
[1] B. Konopelchenko,et al. Singular sector of the Burgers–Hopf hierarchy and deformations of hyperelliptic curves , 2002, nlin/0205012.
[2] Holger R. Dullin,et al. Melnikov's method applied to the double pendulum , 1994 .
[3] David Grant,et al. Formal groups in genus two. , 1990 .
[4] On directional derivatives of the theta function along its divisor , 1992 .
[5] V. Buchstaber,et al. Graded lie algebras that define hyperelliptic sigma functions , 2002 .
[6] A. Perelomov. Integrable systems of classical mechanics and Lie algebras , 1989 .
[7] P. H. Richter,et al. Chaos in Classical Mechanics: The Double Pendulum , 1984 .
[8] B. Konopelchenko,et al. Singular sector of the Kadomtsev–Petviashvili hierarchy, ∂̄ operators of nonzero index, and associated integrable systems , 2000 .
[9] P. Moerbeke,et al. Birkhoff Strata, Backlund-transformations, and Regularization of Isospectral Operators , 1994 .
[10] Boris Dubrovin,et al. Theta functions and non-linear equations , 1981 .
[11] P. H. Richter,et al. Forces in the Double Pendulum , 2000 .
[12] Victor Matveevich Buchstaber,et al. Kleinian functions, hyperelliptic Jacobians and applications , 1997 .
[13] John D. Fay. Theta Functions on Riemann Surfaces , 1973 .
[14] J. C. Eilbeck,et al. Linear r-matrix algebra for systems separable in parabolic coordinates , 1993 .
[15] P. Richter,et al. Application of Greene's method and the MacKay residue criterion to the double pendulum , 1994 .